leetcode Word Ladder II hash BFS

探讨了Word Ladder II 问题的解决方案,通过双向BFS算法寻找两个单词间最短转换序列,并使用DFS回溯获取所有可能的路径。

 

Word Ladder II

 Total Accepted: 1447 Total Submissions: 17873My Submissions

Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:

  1. Only one letter can be changed at a time
  2. Each intermediate word must exist in the dictionary

For example,

Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]

Return

  [
    ["hit","hot","dot","dog","cog"],
    ["hit","hot","lot","log","cog"]
  ]

Note:

  • All words have the same length.
  • All words contain only lowercase alphabetic characters.

 

 

 

I was tormented with TLE all the morning, the following is the code, it seems not to to be better in that way: 

 

#include<iostream>
#include<stdio.h>
#include<stack>
#include<vector>
#include<unordered_set>
#include<unordered_map>

#include<set>
#include<string>
#include<queue>
#include<map>

using namespace std;
class Solution {
public:
    queue<string> fifo;
    unordered_map<string,string> path;
	bool cmp(string s1,string s2){
        int i,count=0;
        for(i=0;i<s1.length();i++){
            if(s1[i]!=s2[i]){
                count++;
                if(count>=2)
                   return false;
            }
        }
        if(count==1)    return true;
        else   return false;
    }

    vector<vector<string>> findLadders(string start, string end, unordered_set<string> &dict) {
        // Note: The Solution object is instantiated only once and is reused by each test case.
		while(!fifo.empty())
			fifo.pop();
        path.clear();
        string partition="-1",front;
        int flg=0;
        vector<vector<string>> res;
        vector<string> shortest,tmp;

        unordered_set<string>::iterator it;
        if(start==end){
            shortest.push_back(start);
            res.push_back(shortest);
            return res;
        }
        
        fifo.push(start);
        fifo.push(partition);
        while(!fifo.empty()){
            front=fifo.front();
            fifo.pop();
            if(front==partition){
                fifo.push(partition);
				if(flg||fifo.front()=="-1")
                    break;
            }
            else{

				dict.erase(front);
                if(cmp(front,end)){
                    flg=1;
                    shortest.clear();
                    tmp.clear();
                    tmp.push_back(end);
                    tmp.push_back(front);
                    while(front!=start){
                        front=path[front];
                        tmp.push_back(front);
                    }
                    for(int i=tmp.size()-1;i>=0;i--){
                        shortest.push_back(tmp[i]);
                    }
                    res.push_back(shortest);
                }
                else if(flg==0){					
					for(int i=0;i<front.length();i++){
						char cur=front[i];
						string last=front;
						for(char ch='a';ch<='z';ch++){
							if(ch!=cur){
								front[i]=ch;
								if(dict.find(front)!=dict.end()){
									fifo.push(front);
									path.insert(pair<string,string>(front,last));
								}	
							}
						}
						front[i]=cur;
					}
                }
            }
        }
		return res;
    }
};

int main()
{
	Solution s;
	string start="hit";
	string end="cog";
	unordered_set<string> d;
//	string start="hot";
//	string end="dog";

	d.insert("hot");
	d.insert("dot");
	d.insert("dog");
	d.insert("lot");
	d.insert("log");
	vector<vector<string>> res=s.findLadders(start,end,d);

    return 0;
}


However, the problem is the structure queue, it should be organized as a hash_map, because every cmp(front,end) wastes too much time, so I have to use two-layer hash_map to replace the queue. The code is :

 

 

class Solution {
public:
    unordered_map<string,vector<string>> path;
    unordered_set<string> layers[2];
    void DFS(string curstring,string end,vector<vector<string>> &res,vector<string> &curpath){
        if(curstring==end){
            curpath.push_back(end);
            res.push_back(curpath);
            curpath.pop_back();
            return;
        }
        if(path[curstring].size()!=0){
            curpath.push_back(curstring);
            for(int i=0;i<path[curstring].size();i++){
                DFS(path[curstring][i],end,res,curpath);
            }
            curpath.pop_back();
        }
    }
    
    vector<vector<string>> findLadders(string start, string end, unordered_set<string> &dict) {
        // Note: The Solution object is instantiated only once and is reused by each test case.
        vector<vector<string>> res;
        vector<string> shortest,tmp;    
        unordered_set<string>::iterator it;
		layers[0].clear();        layers[1].clear();		path.clear();
        int cur=0,next=1;
        if(start==end){
            shortest.push_back(start);
            res.push_back(shortest);
            return res;
        }
        layers[cur].insert(start);
        dict.insert(end);
        while(!layers[cur].empty() && layers[cur].count(end)==0 ){
            for(it=layers[cur].begin();it!=layers[cur].end();it++)
                dict.erase(*it);
            for(it=layers[cur].begin();it!=layers[cur].end();it++){
                string front=*it;
                tmp.clear();
				for(int i=0;i<front.length();i++){
					char c=front[i];
					string last=front;
					for(char ch='a';ch<='z';ch++){
						if(ch!=c){
							front[i]=ch;
							if(dict.find(front)!=dict.end()){
								layers[next].insert(front);
								tmp.push_back(front);
							}	
						}
					}
					front[i]=c;
				} 
				path.insert(pair<string,vector<string>>(*it,tmp));
            }
            cur=!cur;
            next=!next;
			layers[next].clear();
        }
        shortest.clear();
        DFS(start,end,res,shortest);
		return res;
    }
};


Here are some mistakes I made :

 

 

  1. Both successors and predecessors are more than one, so map<string,vector<string>> is used to record the path instead of map<string,string>
  2. The string end should be added to dict, or cmp(front,end) is inevitable, which would result in TLE. 
  3. for(it=dict.begin();it!=dict.end();it++) {    dict.erase(*it)     }   Codes like that are totally wrong. 
  4. Use other 25 characters to construct the next-hop graph. So the complexity is O(25n), which is faster than searching every word in dict. 
  5. Use  a DFS function to parse the path. 
  6. This is the first time I wrote a two-layer BFS instead of a FIFO queue. 

Python Version:

class Solution(object):
    def DFS(self, cur, end, curPath, pathDict, paths):
        if (cur == end):
            curPath.append(end)
            paths.append(list(curPath))
            curPath.pop()
            return
        if (cur in pathDict):
            curPath.append(cur)
            for item in pathDict[cur]:
                self.DFS(item, end, curPath, pathDict, paths)
            curPath.pop()

    def findLadders(self, beginWord, endWord, wordlist):
        wordset = set(wordlist)
        paths, shortest = [], []
        pathDict = {}
        layers = [{beginWord}, set()]
        cur, next = 0, 1
        wordset.add(endWord)

        while (len(layers[cur]) > 0 and (endWord not in layers[cur])):
            for item in layers[cur]:
                wordset.discard(item)
            for item in layers[cur]:
                tmp = []
                for i in range(len(item)):
                    for j in range(ord('a'), ord('z')):
                        newword = item[:i]+chr(j)+item[i+1:]
                        if (newword in wordset):
                            layers[next].add(newword)
                            tmp.append(newword)
                pathDict[item] = tmp
            cur, next = next, cur
            layers[next].clear()
        self.DFS(beginWord, endWord, [], pathDict, paths)
        return paths


if __name__ == "__main__":
    assert Solution().findLadders("hit", "cog", {"hot", "dot", "dog", "lot", "log"}) == [
        ["hit", "hot", "dot", "dog", "cog"],
        ["hit", "hot", "lot", "log", "cog"]
    ]

    assert Solution().findLadders("hit", "hit", {"hot", "dot", "dog", "lot", "log"}) == [
        ["hit"]
    ]

 

 

 

本 PPT 介绍了制药厂房中供配电系统的总体概念与设计要点,内容包括: 洁净厂房的特点及其对供配电系统的特殊要求; 供配电设计的一般原则与依据的国家/行业标准; 从上级电网到工厂变电所、终端配电的总体结构与模块化设计思路; 供配电范围:动力配电、照明、通讯、接地、防雷与消防等; 动力配电中电压等级、接地系统形式(如 TN-S)、负荷等级与可靠性、UPS 配置等; 照明的电源方式、光源选择、安装方式、应急与备用照明要求; 通讯系统、监控系统在生产管理与消防中的作用; 接地与等电位连接、防雷等级与防雷措施; 消防设施及其专用供电(消防泵、排烟风机、消防控制室、应急照明等); 常见高压柜、动力柜、照明箱等配电设备案例及部分设计图纸示意; 公司已完成的典型项目案例。 1. 工程背景与总体框架 所属领域:制药厂房工程的公用工程系统,其中本 PPT 聚焦于供配电系统。 放在整个公用工程中的位置:与给排水、纯化水/注射用水、气体与热力、暖通空调、自动化控制等系统并列。 2. Part 01 供配电概述 2.1 洁净厂房的特点 空间密闭,结构复杂、走向曲折; 单相设备、仪器种类多,工艺设备昂贵、精密; 装修材料与工艺材料种类多,对尘埃、静电等更敏感。 这些特点决定了:供配电系统要安全可靠、减少积尘、便于清洁和维护。 2.2 供配电总则 供配电设计应满足: 可靠、经济、适用; 保障人身与财产安全; 便于安装与维护; 采用技术先进的设备与方案。 2.3 设计依据与规范 引用了大量俄语标准(ГОСТ、СНиП、SanPiN 等)以及国家、行业和地方规范,作为设计的法规基础文件,包括: 电气设备、接线、接地、电气安全; 建筑物电气装置、照明标准; 卫生与安全相关规范等。 3. Part 02 供配电总览 从电源系统整体结构进行总览: 上级:地方电网; 工厂变电所(10kV 配电装置、变压
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值