已知f(x)=x3−6ax2+9a2xf(x)=x^3-6ax^2+9a^2xf(x)=x3−6ax2+9a2x(a∈Ra\in Ra∈R)
(1)求函数f(x)f(x)f(x)的单调递减区间。
(2)当a>0a>0a>0时,若对∀x∈[0,3]\forall x\in[0,3]∀x∈[0,3]都有f(x)≤4f(x)\leq 4f(x)≤4成立,求实数aaa的取值范围。
解:
\quad(1)f′(x)=3x2−12ax+9a2=3(x−a)(x−3a)f'(x)=3x^2-12ax+9a^2=3(x-a)(x-3a)f′(x)=3x2−12ax+9a2=3(x−a)(x−3a)
∵\qquad\because∵当f′(x)<0f'(x)<0f′(x)<0时,f(x)f(x)f(x)单调递减
∴\qquad\therefore∴①当a>0a>0a>0时,f(x)f(x)f(x)的单调递减区间为[a,3a][a,3a][a,3a]
\qquad②当a=0a=0a=0时,f(x)f(x)f(x)没有单调递减区间
\qquad③当a<0a<0a<0时,f(x)f(x)f(x)的单调递减区间为[3a,a][3a,a][3a,a]
\quad(2)当a>0a>0a>0时,f(x)f(x)f(x)在(−∞,a](-\infty,a](−∞,a]和[3a,+∞)[3a,+\infty)[3a,+∞)上单调递增,在[a,3a][a,3a][a,3a]上单调递减
\qquad①当0<3a≤30<3a\leq 30<3a≤3时,即0<a≤10<a\leq 10<a≤1时
\qquad题意即f(a)=4a3≤4f(a)=4a^3\leq 4f(a)=4a3≤4且f(3)=27a2−54a+27≤4f(3)=27a^2-54a+27\leq 4f(3)=27a2−54a+27≤4
\qquad解得1−239≤a≤11-\dfrac{2\sqrt 3}{9}\leq a\leq 11−923≤a≤1
\qquad②当a<3a<3a<3且3a>33a>33a>3时,即1<a<31<a<31<a<3时
\qquad题意即f(a)=4a3≤4f(a)=4a^3\leq 4f(a)=4a3≤4
\qquad解得aaa无解
\qquad③当a≥3a\geq 3a≥3时
\qquad题意即f(3)=27a2−54a+27≤4f(3)=27a^2-54a+27\leq 4f(3)=27a2−54a+27≤4
\qquad解得aaa无解
\qquad综上所述,aaa的取值范围为[1−239,1][1-\dfrac{2\sqrt 3}{9},1][1−923,1]