已知函数f(x)=x(1−lnx)f(x)=x(1-\ln x)f(x)=x(1−lnx)
(1)讨论f(x)f(x)f(x)的单调性
(2)设a,ba,ba,b为两个不相等的正数,且blna−alnb=a−bb\ln a-a\ln b=a-bblna−alnb=a−b,
\qquad求证:2<1a+1b<e2<\dfrac 1a+\dfrac 1b<e2<a1+b1<e
解:
\quad(1)f(x)f(x)f(x)定义域为(0,+∞)(0,+\infty)(0,+∞),f′(x)=−lnxf'(x)=-\ln xf′(x)=−lnx
\qquad当x∈(0,1)x\in(0,1)x∈(0,1)时,f′(x)<0f'(x)<0f′(x)<0
\qquad当x=1x=1x=1时,f′(x)=0f'(x)=0f′(x)=0
\qquad当x∈(1,+∞)x\in(1,+\infty)x∈(1,+∞)时,f′(x)>0f'(x)>0f′(x)>0
\qquad所以单调递增区间为(0,1](0,1](0,1],单调递减区间为[1,+∞)[1,+\infty)[1,+∞)
\quad(2)blna−alnb=a−bb\ln a-a\ln b=a-bblna−alnb=a−b整理得lna+1a=lnb+1b\dfrac{\ln a+1}{a}=\dfrac{\ln b+1}{b}alna+1=blnb+1,即f(1a)=f(1b)f(\dfrac 1a)=f(\dfrac 1b)f(a1)=f(b1)
\qquad设x1=1ax_1=\dfrac 1ax1=a1,x2=1bx_2=\dfrac 1bx2=b1,不妨设x1<x2x_1<x_2x1<x2
\qquad由(1)得f(x)f(x)f(x)在(0,1](0,1](0,1]单调递增,在[1,+∞)[1,+\infty)[1,+∞)单调递减
\qquad所以x1∈(0,1),x2∈(1,+∞)x_1\in (0,1),x_2\in(1,+\infty)x1∈(0,1),x2∈(1,+∞)
\qquad①证明1a+1b>2\dfrac 1a+\dfrac 1b>2a1+b1>2
\qquad令F(x)=f(x)−f(2−x)F(x)=f(x)-f(2-x)F(x)=f(x)−f(2−x)
\qquad则F′(x)=−lnx−ln(2−x)=−lnx(2−x)F'(x)=-\ln x-\ln(2-x)=-\ln x(2-x)F′(x)=−lnx−ln(2−x)=−lnx(2−x)
\qquad当x∈(0,1)x\in(0,1)x∈(0,1)时,F′(x)<0F'(x)<0F′(x)<0,即F(x)F(x)F(x)单调递增
F(x)<F(1)=0\qquad F(x)<F(1)=0F(x)<F(1)=0,即f(2−x)>f(x)f(2-x)>f(x)f(2−x)>f(x),f(2−x1)>f(x1)=f(x2)f(2-x_1)>f(x_1)=f(x_2)f(2−x1)>f(x1)=f(x2)
∵1<2−x1<2\qquad \because 1<2-x_1<2∵1<2−x1<2,f(x)f(x)f(x)在[1,+∞)[1,+\infty)[1,+∞)上单调递减
∴2−x1<x2\qquad \therefore 2-x_1<x_2∴2−x1<x2,得x1+x2>2x_1+x_2>2x1+x2>2,即1a+1b>2\dfrac 1a+\dfrac 1b>2a1+b1>2
\qquad②证明1a+1b<e\dfrac 1a+\dfrac 1b<ea1+b1<e
\qquad令F(x)=f(x)−f(e−x)=2x−e+(e−x)ln(e−x)−xlnxF(x)=f(x)-f(e-x)=2x-e+(e-x)\ln(e-x)-x\ln xF(x)=f(x)−f(e−x)=2x−e+(e−x)ln(e−x)−xlnx
g(x)=2x−e+(e−x)ln(e−x)\qquad \quad g(x)=2x-e+(e-x)\ln(e-x)g(x)=2x−e+(e−x)ln(e−x)
\qquad当x∈(0,1)x\in(0,1)x∈(0,1)时,g′(x)=1−ln(e−x)>0g'(x)=1-\ln(e-x)>0g′(x)=1−ln(e−x)>0
\qquad所以g(x)g(x)g(x)单调递增,得g(x)>g(0)=0g(x)>g(0)=0g(x)>g(0)=0
∵\qquad \because∵当x∈(0,1)x\in(0,1)x∈(0,1)时,−xlnx>0-x\ln x>0−xlnx>0
∴F(x)=g(x)−xlnx>0\qquad \therefore F(x)=g(x)-x\ln x>0∴F(x)=g(x)−xlnx>0
\qquad 即f(x)>f(e−x)f(x)>f(e-x)f(x)>f(e−x),f(e−x1)<f(x1)=f(x2)f(e-x_1)<f(x_1)=f(x_2)f(e−x1)<f(x1)=f(x2)
∵e−1<e−x1<e\qquad \because e-1<e-x_1<e∵e−1<e−x1<e,f(x)f(x)f(x)在[1,+∞)[1,+\infty)[1,+∞)上单调递减,且f(e−x1)<f(x1)=f(x2)f(e-x_1)<f(x_1)=f(x_2)f(e−x1)<f(x1)=f(x2)
∴e−x1>x2\qquad \therefore e-x_1>x_2∴e−x1>x2,得x1+x2<ex_1+x_2<ex1+x2<e,即1a+1b<e\dfrac 1a+\dfrac 1b<ea1+b1<e
\qquad综上所述,2<1a+1b<e2<\dfrac 1a+\dfrac 1b<e2<a1+b1<e
总结
以上是对这段时间学的内容的练习。解题过程并不严谨,但解题思路值得参考。若有错误,欢迎大家提出。