已知函数f(x)=a(ex+a)−xf(x)=a(e^x+a)-xf(x)=a(ex+a)−x
(1)讨论f(x)f(x)f(x)的单调性
(2)证明:当a>0a>0a>0时,求证:f(x)>2lna+32f(x)>2\ln a+\dfrac 32f(x)>2lna+23
解:
\quad(1)f′(x)=aex−1f'(x)=ae^x-1f′(x)=aex−1
\qquad①a>0a>0a>0时,x=−lnax=-\ln ax=−lna时f′(x)=0f'(x)=0f′(x)=0
f(x)\qquad f(x)f(x)在[−lna,+∞)[-\ln a,+\infty)[−lna,+∞)上单调递增,在(−∞,−lna](-\infty,-\ln a](−∞,−lna]上单调递减
\qquad②a≤0a\leq 0a≤0时,f(x)f(x)f(x)在(−∞,+∞)(-\infty,+\infty)(−∞,+∞)上单调递减
\quad(2)由(1)得x=−lnax=-\ln ax=−lna时f(x)f(x)f(x)取最小值
\qquad题目即证f(−lna)>2lna+32f(-\ln a)>2\ln a+\dfrac 32f(−lna)>2lna+23
\qquad即1+a2+lna>2lna+321+a^2+\ln a>2\ln a+\dfrac 321+a2+lna>2lna+23,a2−lna−12>0a^2-\ln a-\dfrac 12>0a2−lna−21>0
\qquad令g(a)=a2−lna−12g(a)=a^2-\ln a-\dfrac 12g(a)=a2−lna−21,则g′(a)=2a−1ag'(a)=2a-\dfrac 1ag′(a)=2a−a1
\qquad当a=22a=\dfrac{\sqrt 2}{2}a=22时g′(a)=0g'(a)=0g′(a)=0
g(a)\qquad g(a)g(a)在[22,+∞)[\dfrac{\sqrt 2}{2},+\infty)[22,+∞)上单调递增,在(−∞,22](-\infty,\dfrac{\sqrt 2}{2}](−∞,22]上单调递减
\qquad所以g(a)≥g(22)=−ln22=ln2>0g(a)\geq g(\dfrac{\sqrt 2}{2})=-\ln\dfrac{\sqrt 2}{2}=\ln\sqrt 2>0g(a)≥g(22)=−ln22=ln2>0
\qquad即a2−lna−12>0a^2-\ln a-\dfrac 12>0a2−lna−21>0
\qquad得证f(x)>2lna+32f(x)>2\ln a+\dfrac 32f(x)>2lna+23
文章讨论了函数f(x)=a(e^x+a)-x的单调性,证明了当a>0时,f(x)>2lna+3/2。通过求导确定函数的单调区间,并构造辅助函数证明不等式成立。
4065





