http://acm.hdu.edu.cn/showproblem.php?pid=4549
Problem Description
M斐波那契数列F[n]是一种整数数列,它的定义如下:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
Input
输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
Output
对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
Sample Input
0 1 0 6 10 2
Sample Output
0 60
Source
思路:
1. 首先得出封闭形式:
F[n]=a (n=0)
F[n]=a^Fib[n-1]*b^Fib[n] (n>0)
2. 发现1000000007是质数,遂用费马小定理,得
F[n]%m=a^(Fib[n-1]%(m-1))*b^(Fib[n]%(m-1))%m
3. f[n]%(m-1)的计算用矩阵快速幂
4. a^x的计算用快速幂
完整代码:
/*0ms,232KB*/
#include<cstdio>
const long long M = 1000000007;
struct Matrix
{
long long mat[2][2];
};
const Matrix P =
{
1, 1,
1, 0,
};
const Matrix I =
{
1, 0,
0, 1,
};
Matrix matrixmul(Matrix a, Matrix b)
{
Matrix c;
int i, j, k;
for (i = 0 ; i < 2; ++i)
for (j = 0; j < 2; ++j)
{
c.mat[i][j] = 0;
for (k = 0; k < 2; ++k)
///利用费马小定理
c.mat[i][j] += a.mat[i][k] * b.mat[k][j] % (M - 1);///行*列
c.mat[i][j] %= (M - 1);
}
return c;
}
///P^n%(M-1),P已在程序开头定义
Matrix quickpow(long long n)
{
Matrix m = P, ret = I;
while (n)
{
if (n & 1) ret = matrixmul(ret, m);
n >>= 1;
m = matrixmul(m, m);
}
return ret;
}
///a^b%M
long long quickpow(long long a, long long b)
{
long long ret = 1;
while (b)
{
if (b & 1) ret = ret * a % M;
b >>= 1;
a = a * a % M;
}
return ret;
}
int main()
{
long long a, b, n;
Matrix q;
while (~scanf("%I64d%I64d%I64d", &a, &b, &n))
{
q = quickpow(n);///不需要特判哦
printf("%I64d\n", quickpow(a, q.mat[1][1]) * quickpow(b, q.mat[1][0]) % M);///a^Fib(n-1)*b^Fib(n)%M
}
return 0;
}