11029 - Leading and Trailing
Time limit: 3.000 seconds
Apart from the novice programmers, all others know that you can’t exactly represent numbers raised to some high power. For example, the C functionpow(125456, 455) can be represented in double data type format, but you won’t get all the digits of the result. However we can get at least some satisfaction if we could know few of the leading and trailing digits. This is the requirement of this problem.
Input
The first line of input will be an integer T<1001, where T represents the number of test cases. Each of the next T lines contains two positive integers,n andk. n will fit in 32 bit integer andk will be less than 10000001.
Output
For each line of input there will be one line of output. It will be of the format LLL…TTT, where LLL represents the first three digits ofn^k and TTT represents the last three digits ofn^k. You are assured thatn^k will contain at least 6 digits.
| Sample Input | Output for Sample Input |
| 2 123456 1 123456 2 | 123...456 152...936 |
思路:后三位好求,mod=1000的快速幂就是。
那前三位怎么求呢?——对数
令x=lg(n^k)的整数部分,y=lg(n^k)的小数部分,则n^k由y决定——因为10^x是1000...0。所以10^y再乘上100取整就是前三位。
完整代码:
/*0.015s*/
#include<cstdio>
#include<cmath>
#define sf scanf
#define pf printf
typedef long long ll;
const int mod = 1000;
ll pow_mod(int n, int k)
{
if (k == 0) return 1;
ll temp = pow_mod(n, k >> 1);
temp = temp * temp % mod;
if (k & 1) temp = temp * n % mod;///注意这里中间运算结果会超int
return temp;
}
int main()
{
int t, n, k;
double intpart;
sf("%d", &t);
while (t--)
{
sf("%d%d", &n, &k);
pf("%d...%03lld\n", (int)pow(10.0, 2.0 + modf((double)k * log10(n), &intpart)), pow_mod(n, k));
}
return 0;
}

本文介绍UVa在线评测系统中编号为11029的问题解决方法,该问题要求计算特定指数下数字的前三位和后三位。文章详细解释了如何通过快速幂算法得到后三位,并利用对数特性来确定前三位。
2206

被折叠的 条评论
为什么被折叠?



