今天我想与大家探讨的是一个数学和工程学中的重要概念——稀疏性。这个概念可能听起来很抽象,但它实际上贯穿于我们生活中的许多方面。那么,稀疏性到底是什么呢?简单来说,在数学和信号处理领域,一个信号被称为稀疏,指的是它在某个域(例如时间域、频率域或其他变换域)中只有少量的非零元素。
示例
我们通过两个生活中的例子来理解一下。
窗户上的泥
让我们通过一个实际例子来描绘稀疏性。假设你有一扇带有许多小玻璃窗格的窗户。一天,沙尘暴过后,只有几个窗格上沾满了泥土,而其他的还是一尘不染。这些脏窗格像是非零元素,而干净的窗格像是零元素。你的窗户在被污染的“域”上就体现了稀疏性——只有极少数的元素是“活跃”的。
观察温度
现在让我们从窗户转换到数据。想象你正在测量一天中的温度变化,并每分钟记录一次。你可能会看到温度在大多数时间里保持相对稳定,但在日出和日落时,温度会发生快速变化。如果我们把这个数据集制作成图表,大部分数据点会形成一条直线(这些点可以视为“零”值,因为它们没有信息变化),而只有在日出和