题目
求∑i=1nlcm(n,i)\sum_{i=1}^nlcm(n,i)∑i=1nlcm(n,i)
分析
=∑i=1nnigcd(n,i)=\sum_{i=1}^n\frac{ni}{gcd(n,i)}=i=1∑ngcd(n,i)ni
=n∑d∣n∑i=1nid[gcd(n,i)==d])=n\sum_{d|n}\sum_{i=1}^n\frac{i}{d}[gcd(n,i)==d])=nd∣n∑i=1∑ndi[gcd(n,i)==d])
=n∑d∣n∑i=1⌊nd⌋i[gcd(n,id)==d]=n\sum_{d|n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i[gcd(n,id)==d]=nd∣n∑i=1∑⌊dn⌋i[gcd(n,id)==d]
=n∑d∣n∑i=1⌊nd⌋i[gcd(nd,i)==1]=n\sum_{d|n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i[gcd(\frac{n}{d},i)==1]=nd∣n∑i=1∑⌊dn⌋i[gcd(dn,i)==1]
=n∑d∣n∑i=1⌊nd⌋i[gcd(d,i)==1]=n∑d∣nφ(n)n2=n\sum_{d|n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}i[gcd(d,i)==1]=n\sum_{d|n}\frac{\varphi(n)n}{2}=nd∣n∑i=1∑⌊dn⌋i[gcd(d,i)==1]=nd∣n∑2φ(n)n
时间复杂度O(nlogn)O(nlogn)O(nlogn)
代码
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=1000001;
long long ans[N]; int phi[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(long long ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
signed main(){
for (rr int i=1;i<N;++i) phi[i]=i;
for (rr int i=2;i<N;++i) if (phi[i]==i)
for (rr int j=i;j<N;j+=i)
phi[j]=1ll*phi[j]*(i-1)/i;
for (rr int i=1;i<N;++i)
for (rr int j=i;j<N;j+=i)
ans[j]+=i==1?1:(1ll*phi[i]*i>>1);
for (rr int i=1;i<N;++i) ans[i]=ans[i]*i;
for (rr int t=iut();t;--t)
print(ans[iut()]),putchar(10);
}