2018.07.06【2018提高组】模拟C组

本文解析了矩阵乘法最少次数、扑克游戏布局最优解及圆环取数问题,通过动态规划算法实现,涵盖区间DP、单调队列及RMQ预处理等技巧。

前言:听取WA声一片(爆零了)


比赛题目

JZOJ 1192 矩阵

题目大意

矩阵相乘,求最少进行的乘法次数,矩阵 A ( m ∗ n ) ∗ B ( n ∗ p ) A(m*n)*B(n*p) A(mn)B(np)的乘法次数为 m ∗ n ∗ p m*n*p mnp次。


分析

不得不说,多虑了,题目说明保证能够相乘,且矩阵乘法不符合乘法交换律,所以邻接表不存在的(害得浪费了一个多小时的时间,还一点用都没有),但是基本思想是可以想到的,因为矩阵乘法符合结合律( ( A ∗ B ) ∗ C = A ∗ ( B ∗ C ) (A*B)*C=A*(B*C) (AB)C=A(BC)),区间dp. A ( m ∗ n ) ∗ B ( n ∗ p ) = C ( m ∗ p ) A(m*n)*B(n*p)=C(m*p) A(mn)B(np)=C(mp)
状态转移方程: f [ i ] [ j ] = m i n ( f [ i ] [ j ] , f [ i ] [ k ] + a [ i ] ∗ b [ k ] ∗ b [ j ] + f [ k + 1 ] [ j ] ) f[i][j]=min(f[i][j],f[i][k]+a[i]*b[k]*b[j]+f[k+1][j]) f[i][j]=min(f[i][j],f[i][k]+a[i]b[k]b[j]+f[k+1][j])


代码

#include <cstdio>
#include <cstring>
using namespace std;
int n,a[501],b[501],f[501][501];
int min(int a,int b){return (a<b)?a:b;}
int main(){
	scanf("%d",&n); memset(f,0x3f,sizeof(f));
	for (int i=1;i<=n;i++) scanf("%d%d",&a[i],&b[i]),f[i][i]=0;
	for (int j=2;j<=n;j++)
	for (int i=j-1;i>=1;i--)
	for (int k=i;k<j;k++)
	f[i][j]=min(f[i][j],f[i][k]+a[i]*b[k]*b[j]+f[k+1][j]);
	return !printf("%d",f[1][n]);
}

JZOJ 1736 扑克游戏

题目大意

把扑克放入二叉树的叶子节点中,使 ∑ i = 1 n 点 数 ∗ 层 数 \sum^n_{i=1}点数*层数 i=1n最小。


分析

题目大意不难分析,当你把扑克牌放在节点上,那么你不能把别的扑克牌放在这个节点以及这个节点的子树上,所以扑克牌在叶子节点,后面的条件也很简单可以推出,但这使我想到了WPL最小(哈夫曼树),看到这个又想到了合并果子,堆的算法,每次寻找最小的两个数,累加它们的和,把和加入堆,直到堆只剩下一个数。
快排 O ( n l o g n ) O(nlogn) O(nlogn)算法
单调队列 O ( n ) O(n) O(n)算法


代码(睿智合并果子)

#include <cstdio>
#include <algorithm>
using namespace std;
int n,a[10001],ans;
void up(int x){
	while (x>1&&a[x]<a[x/2]) swap(a[x],a[x/2]),x/=2;
}
void down(int x){
	int y;
	while (x*2<=n||x*2+1<=n){
	if (x*2+1>n||a[x*2]<a[x*2+1]) y=x*2; else y=x*2+1;
	if (a[x]>a[y])swap(a[x],a[y]); x=y;
	}
}
int main(){
	scanf("%d",&n);
	for (int i=1;i<=n;i++) scanf("%d",&a[i]),up(i);
	while (n>1){
		int u=0; u=a[1]; a[1]=a[n]; n--; down(1);//取小的数
		u+=a[1]; a[1]=a[n];	n--; down(1);//取第二小的数
		n++; a[n]=u; ans+=u; up(n);//弹出两个数插入和
	}
	printf("%d",ans); return 0;
}

JZOJ 1397 圆环取数

题目大意

有一个被划分为n个格子的圆环,两个格子的距离为两个格子之间的格子数量的最小值,指针一开始指向了圆环上的某一个格子,取下与它距离小于k的格子的数,取一个数的代价即这个数的值。每次转动指针至相邻的位置代价为圆环上还剩下的数的最大值,求最小代价。


分析

首先每个数都会被取,所以数的总和可以单独处理,但是转动的代价是要求的,所以要争取转的次数少,但是不一定是贪心!
一开始要把第一个指针指向的格子及与它距离小于k的格子的数取下,把圆环断成链,指针向右移i个格或向左移j个格( i + j + k + k &lt; n i+j+k+k&lt;n i+j+k+k<n),当 i + j + k + k + 1 = n i+j+k+k+1=n i+j+k+k+1=n时计算最小值,滚动数组不想多讲(把原来的改一改就好了),最大值可用RMQ预处理
区间dp:
f [ i ] [ j ] [ 0 / 1 ] 表 示 指 针 向 右 移 i 个 格 且 向 左 移 j 个 格 的 最 小 代 价 ( 0 表 示 向 左 移 , 1 表 示 向 右 移 ) f[i][j][0/1]表示指针向右移i个格且向左移j个格的最小代价(0表示向左移,1表示向右移) f[i][j][0/1]ij01
d p [ i ] [ j ] [ 1 ] = min ⁡ ( d p [ i ] [ j − 1 ] [ 1 ] + x 1 , d p [ i ] [ j − 1 ] [ 0 ] + x 1 ∗ ( i + j ) ) dp[i][j][1]=\min(dp[i][j-1][1]+x1,dp[i][j-1][0]+x1*(i+j)) dp[i][j][1]=min(dp[i][j1][1]+x1,dp[i][j1][0]+x1(i+j))
d p [ i ] [ j ] [ 0 ] = min ⁡ ( d p [ i − 1 ] [ j ] [ 0 ] + x 2 , d p [ i − 1 ] [ j ] [ 1 ] + x 2 ∗ ( i + j ) ) dp[i][j][0]=\min(dp[i-1][j][0]+x2,dp[i-1][j][1]+x2*(i+j)) dp[i][j][0]=min(dp[i1][j][0]+x2,dp[i1][j][1]+x2(i+j))
x 1 = max ⁡ t = k + 2 + i n − k − j + 1 a [ t ] , x 2 = max ⁡ t = k + 1 + i n − k − j a [ t ] x1=\max_{t=k+2+i}^{n-k-j+1}a[t], x2=\max_{t=k+1+i}^{n-k-j}a[t] x1=maxt=k+2+inkj+1a[t],x2=maxt=k+1+inkja[t]


代码

#include <cstdio>
#include <cctype>
using namespace std;
int ans,dp[2][2001][2]; short n,m,a[2001],f[2001][15],nlog[2001]={-1};
short in(){
	short ans=0; char c=getchar();
	while (!isdigit(c)) c=getchar();
	while (isdigit(c)) ans=ans*10+c-48,c=getchar();
	return ans;
}
int max(int a,int b){return (a>b)?a:b;}
int min(int a,int b){return (a<b)?a:b;}
int que(int l,int r){
    if (l>r) return 0;
	int z=nlog[r-l+1];
	return max(f[l][z],f[r-(1<<z)+1][z]);
}
void rmq(int l,int r);
int main(){
	n=in(); m=in(); int l=m+2,r=n-m,ans1=2147483647,ans2=2147483647;
	for (int i=1;i<=n;i++) ans+=(a[i]=in());
	for (int i=1;i<=n;i++) nlog[i]=nlog[i>>1]+1;//预处理2^nlog[i]>i
	if (m<<1>=n-1) return !printf("%d",ans);//连转都不用转
	rmq(l,r);
	for (int i=0;i<=n-m;i++)
	for (int j=0;j<=n-m-i;j++)
	if (i||j){
		dp[i&1][j][0]=dp[i&1][j][1]=666666666;
		int x1=que(l+i,r-j+1),x2=que(l+i-1,r-j);
		if (j) dp[i&1][j][1]=min(dp[i&1][~-j][1]+x1,dp[i&1][~-j][0]+x1*(i+j));//指针在右边
		if (i) dp[i&1][j][0]=min(dp[~-i&1][j][0]+x2,dp[~-i&1][j][1]+x2*(i+j));//指针在左边
		if (i+j==n-m-m-1) ans1=min(ans1,dp[i&1][j][0]),ans2=min(ans2,dp[i&1][j][1]);
	}
	return !printf("%d",ans+min(ans1,ans2));  
}
void rmq(int l,int r){
	for (int i=l;i<=r;i++) f[i][0]=a[i];
	for (int j=1;(1<<j)<=(r-l+1);j++)
	for (int i=l;i+(1<<j)-1<=r;i++)
	f[i][j]=max(f[i][j-1],f[i+(1<<j-1)][j-1]);
}

后续

不管怎么样,题目都不算难,希望明天的考试加油,Fighting!

! A. Stagni, C. Cavallotti, S. Arunthanayothin, Y. Song, ! O. Herbinet, F. Battin-Leclerc, T. Faravelli ! "An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia" ! Reaction Chemistry and Engineering (submitted) (2020). ! ! Submitted to Reaction Chemistry and Engineering (November 2019) ! ! Thermodynamic properties ! ! CHEMKIN format ! !VERSION: 17_03 !AUTHORS: C1-C3 Burcat !NOTE: SPECIES RE-ARRANGED AS THE SAME ORDER IN MECH ! !VERSION: 17_05 !Following species are updated from ATcT's Database: ! H H2 O O2 HE ! OH H2O N2 HO2 HCO ! H2O2 AR CO CO2 THERMO 300. 1000. 4000. ! ---------ARAMCO 2.0 ------------------- HE ATcT3EHe 1 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] He <g> ATcT ver. 1.122, DHf298 = 0.000 \B1 0.000 kJ/mol - fit MAR17 2.49985609E+00 2.19365392E-07-1.07525085E-10 2.07198041E-14-1.39358612E-18 2 -7.45309155E+02 9.29535014E-01 2.49976293E+00 1.01013432E-06-8.24578465E-10 3 -6.85983306E-13 7.24751856E-16-7.45340917E+02 9.29800315E-01 0.00000000E+00 4 AR ATcT3EAr 1 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] Ar <g> ATcT ver. 1.122, DHf298 = 0.000 \B1 0.000 kJ/mol - fit MAR17 2.49989176E+00 1.56134837E-07-7.76108557E-11 1.52928085E-14-1.05304493E-18 2 -7.45328403E+02 4.38029835E+00 2.49988611E+00 2.13037960E-07 8.97320772E-10 3 -2.31395752E-12 1.30201393E-15-7.45354481E+02 4.38024367E+00 0.00000000E+00 4 N2 ATcT3EN 2 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] N2 <g> ATcT ver. 1.122, DHf298 = 0.000 \B1 0.000 kJ/mol - fit MAR17 2.93802970E+00 1.41838030E-03-5.03281045E-07 8.07555464E-11-4.76064275E-15 2 -9.17180990E+02 5.95521985E+00 3.53603521E+00-1.58270944E-04-4.26984251E-07 3 2.37542590E-09-1.39708206E-12-1.04749645E+03 2.94603724E+00 0.00000000E+00 4 O2 ATcT3EO 2 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] O2 <g> ATcT ver. 1.122, DHf298 = 0.000 \B1 0.000 kJ/mol - fit MAR17 3.65980488E+00 6.59877372E-04-1.44158172E-07 2.14656037E-11-1.36503784E-15 2 -1.21603048E+03 3.42074148E+00 3.78498258E+00-3.02002233E-03 9.92029171E-06 3 -9.77840434E-09 3.28877702E-12-1.06413589E+03 3.64780709E+00 0.00000000E+00 4 H2 ATcT3EH 2 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] H2 <g> ATcT ver. 1.122, DHf298 = 0.000 \B1 0.000 kJ/mol - fit MAR17 2.90207649E+00 8.68992581E-04-1.65864430E-07 1.90851899E-11-9.31121789E-16 2 -7.97948726E+02-8.45591320E-01 2.37694204E+00 7.73916922E-03-1.88735073E-05 3 1.95517114E-08-7.17095663E-12-9.21173081E+02 5.47184736E-01 0.00000000E+00 4 H2O ATcT3EH 2O 1 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] H2O <g> ATcT ver. 1.122, DHf298 = -241.833 \B1 0.027 kJ/mol - fit MAR17 2.73117512E+00 2.95136995E-03-8.35359785E-07 1.26088593E-10-8.40531676E-15 2 -2.99169082E+04 6.55183000E+00 4.20147551E+00-2.05583546E-03 6.56547207E-06 3 -5.52906960E-09 1.78282605E-12-3.02950066E+04-8.60610906E-01-2.90858262E+04 4 H2O2 ATcT3EH 2O 2 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] H2O2 <g> ATcT ver. 1.122, DHf298 = -135.457 \B1 0.064 kJ/mol - fit MAR17 4.54017480E+00 4.15970971E-03-1.30876777E-06 2.00823615E-10-1.15509243E-14 2 -1.79514029E+04 8.55881745E-01 4.23854160E+00-2.49610911E-04 1.59857901E-05 3 -2.06919945E-08 8.29766320E-12-1.76486003E+04 3.58850097E+00-1.62917334E+04 4 O ATcT3EO 1 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] O <g> ATcT ver. 1.122, DHf298 = 249.229 \B1 0.002 kJ/mol - fit MAR17 2.55160087E+00-3.83085457E-05 8.43197478E-10 4.01267136E-12-4.17476574E-16 2 2.92287628E+04 4.87617014E+00 3.15906526E+00-3.21509999E-03 6.49255543E-06 3 -5.98755115E-09 2.06876117E-12 2.91298453E+04 2.09078344E+00 2.99753606E+04 4 H ATcT3EH 1 0 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] H <g> ATcT ver. 1.122, DHf298 = 217.998 \B1 0.000 kJ/mol - fit MAR17 2.49985211E+00 2.34582548E-07-1.16171641E-10 2.25708298E-14-1.52992005E-18 2 2.54738024E+04-4.45864645E-01 2.49975925E+00 6.73824499E-07 1.11807261E-09 3 -3.70192126E-12 2.14233822E-15 2.54737665E+04-4.45574009E-01 2.62191345E+04 4 OH ATcT3EH 1O 1 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] OH <g> ATcT ver. 1.122, DHf298 = 37.490 \B1 0.027 kJ/mol - fit MAR17 2.84581721E+00 1.09723818E-03-2.89121101E-07 4.09099910E-11-2.31382258E-15 2 3.71706610E+03 5.80339915E+00 3.97585165E+00-2.28555291E-03 4.33442882E-06 3 -3.59926640E-09 1.26706930E-12 3.39341137E+03-3.55397262E-02 4.50901087E+03 4 HO2 ATcT3EH 1O 2 0 0G 200.00 6000.00 1000.00 1 ! [Ghobad] HO2 <g> ATcT ver. 1.122, DHf298 = 12.26 \B1 0.16 kJ/mol - fit MAR17 4.10564010E+00 2.04046836E-03-3.65877562E-07 1.85973044E-11 4.98818315E-16 2 4.32898769E+01 3.30808126E+00 4.26251250E+00-4.45642032E-03 2.05164934E-05 3 -2.35794011E-08 9.05614257E-12 2.62442356E+02 3.88223684E+00 1.47417835E+03 4 !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !NOx MODULE (from Burcat http://garfield.chem.elte.hu/Burcat/THERM.DAT) !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ NO RUS 89N 1O 1 0 0G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 3.26071234E+00 1.19101135E-03-4.29122646E-07 6.94481463E-11-4.03295681E-15 2 9.92143132E+03 6.36900518E+00 4.21859896E+00-4.63988124E-03 1.10443049E-05 3 -9.34055507E-09 2.80554874E-12 9.84509964E+03 2.28061001E+00 1.09770882E+04 4 N2O L 7/88N 2O 1 0 0G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 0.48230729E+01 0.26270251E-02-0.95850872E-06 0.16000712E-09-0.97752302E-14 2 0.80734047E+04-0.22017208E+01 0.22571502E+01 0.11304728E-01-0.13671319E-04 3 0.96819803E-08-0.29307182E-11 0.87417746E+04 0.10757992E+02 0.98141682E+04 4 NO2 L 7/88N 1O 2 0 0G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 0.48847540E+01 0.21723955E-02-0.82806909E-06 0.15747510E-09-0.10510895E-13 2 0.23164982E+04-0.11741695E+00 0.39440312E+01-0.15854290E-02 0.16657812E-04 3 -0.20475426E-07 0.78350564E-11 0.28966180E+04 0.63119919E+01 0.41124701E+04 4 HNO ATcT/AH 1.N 1.O 1. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 3.16598124E+00 2.99958892E-03-3.94376786E-07-3.85344089E-11 7.07602668E-15 2 1.17726311E+04 7.64511172E+00 4.53525574E+00-5.68543377E-03 1.85198540E-05 3 -1.71881225E-08 5.55818157E-12 1.16183003E+04 1.74315886E+00 1.28500657E+04 4 HNO2 ATcT3EH 1N 1O 2 0G 200.00 6000.00 1000.00 1 ! Glarborg, P. et al. Progr Energy Combust Sci, 67, 31-68. (2018) 4.66358504E+00 4.89854351E-03-1.79694193E-06 2.94420361E-10-1.78235577E-14 2 -7.25216334E+03-3.06053640E-02 4.03779347E+00-4.46123109E-03 3.19440815E-05 3 -3.79359490E-08 1.44570885E-11-6.53088236E+03 5.90620097E+00-5.31122753E+03 4 HONO ATcT3EH 1N 1O 2 0G 200.00 6000.00 1000.00 1 ! Glarborg, P. et al. Progr Energy Combust Sci, 67, 31-68. (2018) 5.79144641E+00 3.64630732E-03-1.29112765E-06 2.06498233E-10-1.22138679E-14 2 -1.15974343E+04-4.07145349E+00 3.16416438E+00 8.50517773E-03 5.48561573E-07 3 -8.27656474E-09 4.39957151E-12-1.07744086E+04 1.00231941E+01-9.46242812E+03 4 HONO2 T 8/03H 1.N 1.O 3. 0.G 200.000 6000.000 1000. 1 ! HNO3 in Burcat database http://garfield.chem.elte.hu/Burcat/THERM.DAT 8.03098942E+00 4.46958589E-03-1.72459491E-06 2.91556153E-10-1.80102702E-14 2 -1.93138183E+04-1.62616537E+01 1.69329154E+00 1.90167702E-02-8.25176697E-06 3 -6.06113827E-09 4.65236978E-12-1.74198909E+04 1.71839838E+01-1.61524852E+04 4 N2H2 2/13/19 N 2H 2 G 300.000 5000.000 1380.000 1 ! Dean AM Bozzelli JW (Gardiner WC) Gas Phase Combustion Chemistry, Springer 2000. 4.14686796E+00 4.81612315E-03-1.62748817E-06 2.50556098E-10-1.44494188E-14 2 2.33444055E+04 5.34122740E-01 2.55589425E+00 6.54339081E-03-8.81947855E-07 3 -1.15971304E-09 3.97442230E-13 2.41085081E+04 9.80504705E+00 4 H2NN Isodiazene T 9/11N 2.H 2. 0. 0.G 200.000 6000.000 1000. 1 ! Is 'N2H2 Isodiazene' in Burcat database 3.05903670E+00 6.18382347E-03-2.22171165E-06 3.58539206E-10-2.14532905E-14 2 3.48530149E+04 6.69893515E+00 4.53204001E+00-7.32418578E-03 3.00803713E-05 3 -3.04000551E-08 1.04700639E-11 3.49580003E+04 1.51074195E+00 3.61943157E+04 4 HNNO 5/30/18 THERM N 2.H 1.O 1 0.G 300.000 5000.000 1790.000 61 ! Dean AM Bozzelli JW (Gardiner WC) Gas Phase Combustion Chemistry, Springer 2000. 2.15594002E+06-4.13111192E+03 2.65627771E+00-6.70395293E-04 5.57827338E-08 2 -8.03468100E+08-1.18702032E+07-8.96779017E-01 3.69714359E-02-4.80099825E-05 3 2.62274393E-08-5.11382966E-12 2.68675048E+04 2.64521806E+01 4 NH2NO 5/30/18 THERM N 2.H 2.O 1 0.G 300.000 5000.000 1371.000 61 ! Dean AM Bozzelli JW (Gardiner WC) Gas Phase Combustion Chemistry, Springer 2000. 7.93898100E+00 5.21842622E-03-2.12493130E-06 3.53331059E-10-2.12447889E-14 2 5.42322972E+03-1.84299492E+01 1.85914077E+00 1.68525394E-02-9.37240888E-06 3 1.71380329E-09 4.84625807E-14 7.78108234E+03 1.51172833E+01 4 HNOH trans & Equ T11/11H 2.N 1.O 1. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 3.98321933E+00 4.88846374E-03-1.65086637E-06 2.55371446E-10-1.48308561E-14 2 1.05780106E+04 3.62582838E+00 3.95608248E+00-3.02611020E-03 2.56874396E-05 3 -3.15645120E-08 1.24084574E-11 1.09199790E+04 5.55950983E+00 1.21354115E+04 4 NH2OH ATcT/AN 1.H 3.O 1. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 3.88112502E+00 8.15708448E-03-2.82615576E-06 4.37930933E-10-2.52724604E-14 2 -6.86018419E+03 3.79156136E+00 3.21016092E+00 6.19671676E-03 1.10594948E-05 3 -1.96668262E-08 8.82516590E-12-6.58148481E+03 7.93293571E+00-5.28593988E+03 4 NH3 ATcT3EH 3N 1 0 0G 200.00 4000.00 1000.00 1 ! Glarborg, P. et al. Progr Energy Combust Sci, 67, 31-68. (2018) 2.36074311E+00 6.31850146E-03-2.28966806E-06 4.11767411E-10-2.90836787E-14 2 -6.41596473E+03 8.02154329E+00 4.14027871E+00-3.58489142E-03 1.89475904E-05 3 -1.98833970E-08 7.15267961E-12-6.68545158E+03-1.66754883E-02-5.47888720E+03 4 N2H4 HYDRAZINE L 5/90N 2H 4 0 0G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 4.93957357E+00 8.75017187E-03-2.99399058E-06 4.67278418E-10-2.73068599E-14 2 9.28265548E+03-2.69439772E+00 3.83472149E+00-6.49129555E-04 3.76848463E-05 3 -5.00709182E-08 2.03362064E-11 1.00893925E+04 5.75272030E+00 1.14474575E+04 4 N L 6/88N 1 0 0 0G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 0.24159429E+01 0.17489065E-03-0.11902369E-06 0.30226244E-10-0.20360983E-14 2 0.56133775E+05 0.46496095E+01 0.25000000E+01 0.00000000E+00 0.00000000E+00 3 0.00000000E+00 0.00000000E+00 0.56104638E+05 0.41939088E+01 0.56850013E+05 4 NO3 ATcT/AN 1.O 3. 0. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 7.48347702E+00 2.57772064E-03-1.00945831E-06 1.72314063E-10-1.07154008E-14 2 6.12990474E+03-1.41618136E+01 2.17359330E+00 1.04902685E-02 1.10472669E-05 3 -2.81561867E-08 1.36583960E-11 7.81290905E+03 1.46022090E+01 8.97563416E+03 4 NH ATcT/AN 1.H 1. 0. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 2.78372644E+00 1.32985888E-03-4.24785573E-07 7.83494442E-11-5.50451310E-15 2 4.23461945E+04 5.74084863E+00 3.49295037E+00 3.11795720E-04-1.48906628E-06 3 2.48167402E-09-1.03570916E-12 4.21059722E+04 1.84834973E+00 4.31525130E+04 4 NNH T 8/11N 2.H 1. 0. 0.G 200.000 6000.000 1000. 1 ! N2H in Burcat database http://garfield.chem.elte.hu/Burcat/THERM.DAT 3.42744423E+00 3.23295234E-03-1.17296299E-06 1.90508356E-10-1.14491506E-14 2 2.87676026E+04 6.39209233E+00 4.25474632E+00-3.45098298E-03 1.37788699E-05 3 -1.33263744E-08 4.41023397E-12 2.87932080E+04 3.28551762E+00 3.00058572E+04 4 NH2 AMIDOGEN RAD IU3/03N 1.H 2. 0. 0.G 200.000 3000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 2.59263049E+00 3.47683597E-03-1.08271624E-06 1.49342558E-10-5.75241187E-15 2 2.15737320E+04 7.90565351E+00 4.19198016E+00-2.04602827E-03 6.67756134E-06 3 -5.24907235E-09 1.55589948E-12 2.11863286E+04-9.04785244E-02 2.23945849E+04 4 H2NO RADICAL T09/09N 1.H 2.O 1. 0.G 200.000 6000.000 1000. 1 ! Glarborg, P. et al. Progr Energy Combust Sci, 67, 31-68. (2018) 3.75555914E+00 5.16219354E-03-1.76387387E-06 2.75052692E-10-1.60643143E-14 2 6.51826177E+03 4.30933053E+00 3.93201139E+00-1.64028165E-04 1.39161409E-05 3 -1.62747853E-08 6.00352834E-12 6.71178975E+03 4.58837038E+00 7.97044877E+03 4 N2H3 Rad. T 7/11N 2.H 3. 0. 0.G 200.000 6000.000 1000. 1 ! E. Goos, A. Burcat and B. Ruscic http://garfield.chem.elte.hu/Burcat/THERM.DAT 4.04483566E+00 7.31130186E-03-2.47625799E-06 3.83733021E-10-2.23107573E-14 2 2.53241420E+04 2.88423392E+00 3.42125505E+00 1.34901590E-03 2.23459071E-05 3 -2.99727732E-08 1.20978970E-11 2.58198956E+04 7.83176309E+00 2.70438066E+04 4 END 以上是我的therm文件,设置应当正确,而我的初始条件设定均为300k,为什么还会出现问题,还有什么地方设置了所谓的common temperature吗
最新发布
11-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值