洛谷 1827 美国血统
题目
给出一棵树的前序遍历和中序遍历,求它的后序遍历
代码
/*
ID:lemondi1
LANG:C++
TASK:heritage
*/
#include <cstdio>
#include <cstring>
#define rr register
using namespace std;
char a[31],b[31]; int pos[31];
inline void dfs(int l,int r,int L,int R){
if (l>r||L>R) return;
rr int now=pos[a[l]];
dfs(l+1,l+now-L,L,now-1);
dfs(l+now-L+1,r,now+1,R);
putchar(a[l]);
}
signed main(){
freopen("heritage.in","r",stdin);
freopen("heritage.out","w",stdout);
scanf("%s%s",b+1,a+1);
rr int len=strlen(a+1);
for (rr int i=1;i<=len;++i) pos[b[i]]=i;
dfs(1,len,1,len);
return !putchar(10);
}
洛谷 2735 电网
题目
有一个由 ( 0 , 0 ) , ( n , m ) , ( p , 0 ) (0,0),(n,m),(p,0) (0,0),(n,m),(p,0)组成的三角形,问三角形内部的格点数
分析
根据皮克定理,可以得到 s = a + 1 2 b − 1 s=a+\frac{1}{2}b-1 s=a+21b−1, a a a表示内部的格点, b b b表示边上的格点, s s s表示多边形的面积,那么 a = s − 1 2 b + 1 a=s-\frac{1}{2}b+1 a=s−21b+1,所以就可以 O ( 1 ) O(1) O(1)求
代码
/*
ID:lemondi1
LANG:C++
TASK:fence9
*/
#include <cstdio>
using namespace std;
inline signed aabs(int x){return x<0?-x:x;}
inline signed gcd(int x,int y){return y?gcd(y,x%y):x;}
signed main(){
freopen("fence9.in","r",stdin);
freopen("fence9.out","w",stdout);
int n,m,p; scanf("%d%d%d",&n,&m,&p);
return !printf("%d\n",((p*(m-1)-gcd(n,m)-gcd(aabs(n-p),m))>>1)+1);
}
洛谷 2736 破锣摇滚乐队
代码
/*
ID:lemondi1
LANG:C++
TASK:rockers
*/
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
int n,lim,m,ans,a[21];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed max(int a,int b){return a>b?a:b;}
inline void dfs(int dep,int now,int tot,int sum){
if (dep>n||tot>m){
ans=max(ans,sum);
return;
}
if (lim>=now+a[dep]){
if (lim>now+a[dep]) dfs(dep+1,now+a[dep],tot,sum+1);
dfs(dep+1,0,tot+1,sum+1);//新一个碟子
}
dfs(dep+1,now,tot,sum);
}
signed main(){
freopen("rockers.in","r",stdin);
freopen("rockers.out","w",stdout);
n=iut(),lim=iut(),m=iut();
for (rr int i=1;i<=n;++i) a[i]=iut();
dfs(1,0,1,0);
return !printf("%d\n",ans);
}