洛谷 P3953 逛公园

该博客讨论了洛谷P3953题目,涉及逛公园的路线选择问题。题目描述了一个有向图,策策希望每天的路线不重复且时间不超过最短路径的d+k。博客分析了解题思路,指出问题关键在于dp和记忆化搜索,并提供了反向跑图的优化方法,最后给出了状态转移方程和代码实现的概述。

原题链接

题目描述

策策同学特别喜欢逛公园。公园可以看成一张 NN 个点 MM 条边构成的有向图,且没有 自环和重边。其中 11 号点是公园的入口,NN 号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间。

策策每天都会去逛公园,他总是从 11 号点进去,从 NN 号点出来。

策策喜欢新鲜的事物,它不希望有两天逛公园的路线完全一样,同时策策还是一个 特别热爱学习的好孩子,它不希望每天在逛公园这件事上花费太多的时间。如果 11 号点 到 NN 号点的最短路长为 dd,那么策策只会喜欢长度不超过 d + Kd+K 的路线。

策策同学想知道总共有多少条满足条件的路线,你能帮帮它吗?

为避免输出过大,答案对 PP 取模。

如果有无穷多条合法的路线,请输出 -1−1。

输入格式

第一行包含一个整数 TT, 代表数据组数。

接下来 TT 组数据,对于每组数据: 第一行包含四个整数 N,M,K,PN,M,K,P,每两个整数之间用一个空格隔开。

接下来 MM 行,每行三个整数 a_i,b_i,c_iai​,bi​,ci​,代表编号为 a_i,b_iai​,bi​ 的点之间有一条权值为 c_ici​ 的有向边,每两个整数之间用一个空格隔开。

输出格式

输出文件包含 TT 行,每行一个整数代表答案。

解题思路

&

### 关于记忆化搜索的练习题 在平台上有许多涉及记忆化搜索的经典题目,这些题目可以帮助学习者更好地理解动态规划与深度优先搜索相结合的方法。以下是几个推荐的记忆化搜索练习题及其背景介绍: #### 题目一:P4170 [CQOI2007] 涂色 此题属于经典的 DP 类型问题之一,主要考察如何通过记忆化的方式优化暴力枚举的过程[^1]。 该题的核心在于利用状态压缩技术存储已经处理过的子结构,并结合 DFS 的方式逐步扩展解空间。 #### 题目二:P1464 Function 这是一个典型的递归加记忆化的入门级题目[^2]。它强调了在搜索过程中记录中间结果的要性,从而避免不必要的复计算。具体实现上可以通过定义一个辅助数组 `f[x][y]` 来保存已访问的状态值。 #### 题目三:UVA - 1629 Cake Slicing 这篇文章提到的一道经典例题展示了记搜的优势所在[^3]。通过对不同切割方案的结果进行缓存操作,可以显著降低时间复杂度并提高效率。 #### 题目四:滑雪 (P1434) 作为一道非常受欢迎的记忆化搜索练习题,“滑雪”模拟了一个二维网格上的最长下降路径求解过程[^5]。给定一张地图表示各个位置的高度分布情况后,我们需要找到从任意起出发能够达到的最大步数长度。 ```python from functools import lru_cache @lru_cache(None) def dfs(x, y): res = 1 directions = [(0,-1),(-1,0),(0,+1),(+1,0)] for dx, dy in directions: nx, ny = x + dx, y + dy if 0<=nx<R and 0<=ny<C and grid[nx][ny]<grid[x][y]: res = max(res, dfs(nx, ny)+1 ) return res R,C=map(int,input().split()) grid=[list(map(int,input().strip().split()))for _ in range(R)] ans=0 for i in range(R): for j in range(C): ans=max(ans ,dfs(i,j)) print(ans) ``` 上述代码片段实现了基于 Python 的解决方案,其中运用装饰器 @lru_cache 实现自动化的函数调用结果缓存功能。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值