狄利克雷卷积
约定
n=p1a1p2a2⋯prar\ n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} n=p1a1p2a2⋯prar
a∣b\ a \mid b a∣b: a\ a a整除 b\ b b
a∤b\ a \nmid b a∤b: a\ a a不整除 b\ b b
ak∥b\ a^{k} \parallel b ak∥b: ak∣b\ a^{k} \mid b ak∣b且 ak+1∤b\ a^{k+1} \nmid b ak+1∤b
(a,b)\ (a,b) (a,b)最大公约数
[a,b]\ [a,b] [a,b]最小公倍数
定义
h(n)=∑d∣nf(n)g(nd)=∑d1d2=nf(d1)g(d2) h(n)= \sum_{d \mid n} f(n) g(\frac{n}{d})=\sum_{d_{1} d_{2} =n} f(d_{1})g(d_{2}) h(n)=d∣n∑f(n)g(dn)=d1d2=n∑f(d1)g(d2)
也可写作:
h=f∘g h=f \circ g h=f∘g
这相当于一种运算。
性质
结合律
(f∘g)∘h=f∘(g∘h) (f \circ g) \circ h=f \circ(g \circ h) (f∘g)∘h=f∘(g∘h)
证明
       (f∘g)∘h=∑d1∣n{∑d2∣d1f(d2)g(d1d2)}g(nd1) =∑d1d2d3=n(f(d1)g(d2))g(d3) =∑d1d2d3=nf(d1)(g(d2)g(d3)) =f∘(g∘h) 
\begin{array}{crl}
& &\,\,\,\,\,\,\,(f \circ g) \circ h\\& &=\sum_{d_{1} \mid n}\{ \sum_{d_{2} \mid d_{1}}f(d_{2})g(\frac{d_{1}}{d_{2}})\} g(\frac{n}{d_{1}}) \\\,\\
& &=\sum_{d_{1} d_{2} d_{3}= n} (f(d_{1})g(d_{2}))g(d_{3}) \\\,\\
& &=\sum_{d_{1} d_{2} d_{3}= n} f(d_{1})(g(d_{2})g(d_{3}))\\\,\\
& &=f \circ(g \circ h)\\\,\\
\end{array}
(f∘g)∘h=∑d1∣n{∑d2∣d1f(d2)g(d2d1)}g(d1n)=∑d1d2d3=n(f(d1)g(d2))g(d3)=∑d1d2d3=nf(d1)(g(d2)g(d3))=f∘(g∘h)
证毕
交换律
f∘g=g∘f f \circ g=g \circ f f∘g=g∘f
证明
f∘g=∑d1d2=nf(d1)g(d2)=∑d1d2=ng(d1)f(d2)=g∘f f \circ g=\sum_{d_{1} d_{2} =n} f(d_{1})g(d_{2})=\sum_{d_{1} d_{2} =n} g(d_{1})f(d_{2})=g \circ f f∘g=d1d2=n∑f(d1)g(d2)=d1d2=n∑g(d1)f(d2)=g∘f
证毕
逆元
对于 f\ f f存在 g\ g g使
f∘g=ϵ(n)
f \circ g = \epsilon(n)
f∘g=ϵ(n)
其中
ϵ(n)=[n=1]
\epsilon(n)= [n=1]
ϵ(n)=[n=1]
证明
g(n)=1f(1)([n=1]−∑i∣n,i≠nf(i)g(ni)) g(n)=\frac{1}{f(1)} \left( \left[ n=1 \right] - \sum_{i \mid n,i \neq n}f(i) g(\frac{n}{i}) \right) g(n)=f(1)1⎝⎛[n=1]−i∣n,i̸=n∑f(i)g(in)⎠⎞
如此一来
∑d∣nf(d)g(nd)=f(1)g(n)−∑d∣n,d≠1f(d)g(nd)=[n=1] \sum_{d \mid n}f(d)g(\frac{n}{d})=f(1)g(n)-\sum_{d \mid n,d \neq 1}f(d)g(\frac{n}{d})=\left[ n=1 \right] d∣n∑f(d)g(dn)=f(1)g(n)−d∣n,d̸=1∑f(d)g(dn)=[n=1]
证毕
分配率
f∘(g+h)=f∘g+f∘h f \circ (g + h)=f \circ g+f \circ h f∘(g+h)=f∘g+f∘h
证明
f∘(g+h)=∑d1d2=nf(d1)(g(d2)+h(d2))=∑d1d2=nf(d1)g(d2)+∑d1d2=nf(d1)h(d2)=f∘g+f∘h f \circ (g + h)=\sum_{d_{1} d_{2} =n} f(d_{1})(g(d_{2})+h(d_{2}))=\sum_{d_{1} d_{2} =n} f(d_{1})g(d_{2})+\sum_{d_{1} d_{2} =n} f(d_{1})h(d_{2})=f \circ g+f \circ h f∘(g+h)=d1d2=n∑f(d1)(g(d2)+h(d2))=d1d2=n∑f(d1)g(d2)+d1d2=n∑f(d1)h(d2)=f∘g+f∘h
数乘结合律
(s⋅f)∘g=s⋅(f∘g) (s \cdot f) \circ g=s \cdot (f \circ g) (s⋅f)∘g=s⋅(f∘g)
证明
(s⋅f)∘g=∑d1d2=n(s⋅f(d1))g(d2)=s∑d1d2=nf(d1)g(d2) (s \cdot f) \circ g=\sum_{d_{1} d_{2} =n} (s\cdot f(d_{1}))g(d_{2})=s\sum_{d_{1} d_{2} =n}f(d_{1})g(d_{2}) (s⋅f)∘g=d1d2=n∑(s⋅f(d1))g(d2)=sd1d2=n∑f(d1)g(d2)
证毕
积性的传递性
若 f(n),g(n)\ f(n),g(n) f(n),g(n)为积性 h=f∘g\ h=f \circ g h=f∘g也是积性的
       h(nm) =∑d∣nmf(d)g(nmd) =∑a∣n,b∣mf(ab)g(nmab) =∑a∣n,b∣mf(a)g(na)f(b)g(mb) ={∑a∣nf(a)g(na)}{∑b∣mf(b)g(mb)} =h(n)h(m) \begin{array}{rcl} & &\,\,\,\,\,\,\,h(nm)\\\,\\ & &=\sum_{d \mid nm} f(d) g(\frac{nm}{d}) \\\,\\ & &=\sum_{a \mid n,b \mid m} f(ab)g(\frac{nm}{ab}) \\\,\\ & &=\sum_{a \mid n,b \mid m} f(a)g(\frac{n}{a}) f(b)g(\frac{m}{b}) \\\,\\ & &=\{ \sum_{a \mid n} f(a)g(\frac{n}{a}) \}\{ \sum_{b \mid m} f(b)g(\frac{m}{b}) \} \\\,\\ & &=h(n)h(m) \end{array} h(nm)=∑d∣nmf(d)g(dnm)=∑a∣n,b∣mf(ab)g(abnm)=∑a∣n,b∣mf(a)g(an)f(b)g(bm)={∑a∣nf(a)g(an)}{∑b∣mf(b)g(bm)}=h(n)h(m)
证毕
f\ f f积性则 f−1\ f^{-1} f−1积性
证明
设 nm>1\ nm>1 nm>1时有 n′m′<nm,g(n′m′)=g(n′)g(m′)\ n'm' < nm,g(n'm')=g(n')g(m') n′m′<nm,g(n′m′)=g(n′)g(m′)成立
f(n)\ f(n) f(n)的逆元 g(n)=1f(1)([n=1]−∑i∣n,i≠nf(i)g(ni))\ g(n)=\frac{1}{f(1)} \left( \left[ n=1 \right] - \sum_{i \mid n,i \neq n}f(i) g(\frac{n}{i}) \right) g(n)=f(1)1([n=1]−∑i∣n,i̸=nf(i)g(in))
       g(nm) =−∑d∣nm,d≠1f(d)g(nmd) =−∑a∣n,b∣m,ab≠1f(ab)g(nmab) =f(1)f(1)g(n)g(m)−∑a∣n,b∣m,ab≠1f(a)f(b)g(na)g(mb) =g(n)g(m)−{∑a∣n,a≠1f(a)g(na)}{∑b∣m,b≠1f(b)g(mb)} =g(n)g(m)−ϵ(n)ϵ(m) =g(n)g(m)
\begin{array}{rcl}
& &\,\,\,\,\,\,\,g(nm) \\\,\\
& &=- \sum_{d \mid nm,d \neq 1}f(d)g(\frac{nm}{d}) \\\,\\
& &=- \sum_{a \mid n,b \mid m,ab \neq 1} f(ab) g(\frac{nm}{ab}) \\\,\\
& &=f(1)f(1)g(n)g(m)- \sum_{a \mid n,b \mid m,ab \neq 1} f(a) f(b) g(\frac{n}{a}) g(\frac{m}{b}) \\\,\\
& &=g(n)g(m)- \{ \sum_{a \mid n,a \neq 1} f(a) g(\frac{n}{a}) \} \{ \sum_{b \mid m,b \neq 1} f(b) g(\frac{m}{b}) \}\\\,\\
& &=g(n)g(m)-\epsilon(n) \epsilon(m) \\\,\\
& &=g(n)g(m)
\end{array}
g(nm)=−∑d∣nm,d̸=1f(d)g(dnm)=−∑a∣n,b∣m,ab̸=1f(ab)g(abnm)=f(1)f(1)g(n)g(m)−∑a∣n,b∣m,ab̸=1f(a)f(b)g(an)g(bm)=g(n)g(m)−{∑a∣n,a̸=1f(a)g(an)}{∑b∣m,b̸=1f(b)g(bm)}=g(n)g(m)−ϵ(n)ϵ(m)=g(n)g(m)
证毕
应用
我们总可以证明求一个狄利克雷卷积的复杂度是 O(nlnn)\ O(n \ln n) O(nlnn)的。