莫比乌斯变换总结

莫比乌斯变换

约定

 n=p1a1p2a2⋯prar\ n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} n=p1a1p2a2prar

 a∣b\ a \mid b ab a\ a a整除 b\ b b

 a∤b\ a \nmid b ab a\ a a不整除 b\ b b

 ak∥b\ a^{k} \parallel b akb ak∣b\ a^{k} \mid b akb ak+1∤b\ a^{k+1} \nmid b ak+1b

 (a,b)\ (a,b) (a,b)最大公约数

 [a,b]\ [a,b] [a,b]最小公倍数

定义

我们设数论函数 f(n)\ f(n) f(n),我们考虑一种运算:

F(n)=∑d∣nf(d)         (1) F(n)= \sum_{d \mid n} f(d)\,\,\,\,\,\,\,\,\, (1) F(n)=dnf(d)(1)

我们看到过很多这样关系:

 f(n)\ f(n) f(n) F(n)\ F(n) F(n)
 1\ 1 1 τ(n)\ \tau(n) τ(n)
 n\ n n σ(n)\ \sigma(n) σ(n)
 φ(n)\ \varphi(n) φ(n) n\ n n
 μ(n)\ \mu(n) μ(n) [1n]\ \left[ \frac{1}{n} \right] [n1]
 μ(n)n\ \frac{ \mu(n)}{n} nμ(n) φ(n)n\ \frac{ \varphi(n)}{n} nφ(n)
 λ(n)\ \lambda(n) λ(n) ln⁡n\ \ln n lnn
 h(n)\ h(n) h(n) N(n)4\ \frac{N(n)}{4} 4N(n)

证明略。

我们称 F(n)\ F(n) F(n) f(n)\ f(n) f(n)的莫比乌斯变换。

定理

定理1

F(n)={1,                                                                                n=1∑e1=0a1∑e2=0a2⋯∑er=0arf(p1e1p2e2⋯prer),   n>1 F(n)= \begin{cases} 1,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n=1 \\ \displaystyle \sum_{e_{1}=0}^{a_{1}} \sum_{e_{2}=0}^{a_{2}} \cdots \sum_{e_{r}=0}^{a_{r}} f(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}), \,\,\,n>1 \end{cases} F(n)=1,n=1e1=0a1e2=0a2er=0arf(p1e1p2e2prer),n>1

 f(n)\ f(n) f(n)积性, F(n)\ F(n) F(n)积性:

F(n)=∏j=1r(1+f(pj)+f(pj2)+⋯f(pjar))            =∏pa∥n(1+f(p)+f(p2)+⋯f(pa)) (2) F(n)= \prod_{j=1}^{r}(1+f(p_{j})+f(p_{j}^{2})+ \cdots f(p_{j}^{a_{r}})) \\ \,\,\,\,\,\,\,\,\,\,\,\,= \prod_{p^{a} \parallel n}(1+f(p)+f(p^{2})+ \cdots f(p^{a}))\, \\ (2) F(n)=j=1r(1+f(pj)+f(pj2)+f(pjar))=pan(1+f(p)+f(p2)+f(pa))(2)

 f(n)\ f(n) f(n)完全积性, F(n)\ F(n) F(n)完全积性:

F(n)=∏j=1r(1+f(pj)+f2(pj)+⋯faj(pj))         =∏pa∥n(1+f(p)+f2(p)+⋯fa(p))    (4) F(n)= \prod_{j=1}^{r}(1+f(p_{j})+f^{2}(p_{j})+ \cdots f^{a_{j}}(p_{j})) \\ \,\,\,\,\,\,\,\,\,=\prod_{p^{a} \parallel n}(1+f(p)+f^{2}(p)+ \cdots f^{a}(p))\,\,\,\, \\ (4) F(n)=j=1r(1+f(pj)+f2(pj)+faj(pj))=pan(1+f(p)+f2(p)+fa(p))(4)

证明
 F(1)=f(1)\ F(1)=f(1) F(1)=f(1)的证明是显然的。

F(n)=∑e1=0a1∑e2=0a2⋯∑er=0arf(p1e1p2e2⋯prer)                                 ={∑e1=0a1f(p1e1)}{∑e2a2fp2e2}⋯{∑er=0arf(prer)} F(n)=\sum_{e_{1}=0}^{a_{1}} \sum_{e_{2}=0}^{a_{2}} \cdots \sum_{e_{r}=0}^{a_{r}} f(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}})\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\ \\ \,\,\,\,\,\,= \{ \sum_{e_{1}=0}^{a_{1}}f(p_{1}^{e_{1}}) \} \{ \sum_{e_{2}}^{a_{2}}f_{p_{2}^{e_{2}}} \} \cdots \{ \sum_{e_{r}=0}^{a_{r}}f(p_{r}^{e_{r}}) \} F(n)=e1=0a1e2=0a2er=0arf(p1e1p2e2prer) ={e1=0a1f(p1e1)}{e2a2fp2e2}{er=0arf(prer)}

显然由(3)式得:

F(n)=F(p1a1)F(p2a2)⋯F(prar)         (5) F(n)=F(p_{1}^{a_{1}}) F(p_{2}^{a_{2}}) \cdots F(p_{r}^{a_{r}})\,\,\,\,\,\,\,\,\,(5) F(n)=F(p1a1)F(p2a2)F(prar)(5)

由此推出其积性。
显然 f(n)\ f(n) f(n)完全积性的时候,显然证明
(4)式。

证毕

引理2

 (m,n)=1\ (m,n)=1 (m,n)=1 k\ k k是给定的正整数,那么对于每个 d∣mn\ d \mid mn dmn成立的充要条件是存在唯一的一对正整数 d1,d2\ d_{1},d_{2} d1,d2满足 d=d1d2,         d1k∣m,         d2k∣n         (6)\ d=d_{1}d_{2},\,\,\,\,\,\,\,\,\,d_{1}^{k} \mid m,\,\,\,\,\,\,\,\,\, d_{2}^{k} \mid n\,\,\,\,\,\,\,\,\,(6) d=d1d2,d1km,d2kn(6)

证明:

(m,n)=1,   dk∣mn⇒dk=(dk,mn)=(dk,m)(dk,n)         (7) (m,n)=1,\,\,\,d^{k} \mid mn \Rightarrow d^{k}=(d^{k},mn)=(d^{k},m)(d^{k},n)\,\,\,\,\,\,\,\,\,(7) (m,n)=1,dkmndk=(dk,mn)=(dk,m)(dk,n)(7)

显见 ((dk,m),(dk,n))=1\ ((d^{k},m),(d^{k},n))=1 ((dk,m),(dk,n))=1,所以:

(dk,m)=((dk,m),d)k=(d,m)k         (8)(dk,n)=((dk,n),d)k=(d,n)k         (9) (d^{k},m)=((d^{k},m),d)^{k}=(d,m)^{k}\,\,\,\,\,\,\,\,\,(8) \\ (d^{k},n)=((d^{k},n),d)^{k}=(d,n)^{k}\,\,\,\,\,\,\,\,\,(9) (dk,m)=((dk,m),d)k=(d,m)k(8)(dk,n)=((dk,n),d)k=(d,n)k(9)

 d1=(d,m),d2=(d,n)\ d_{1}=(d,m),d_{2}=(d,n) d1=(d,m),d2=(d,n),由(6)推出,反过来,若(6)成立, dk∣mn\ d^{k} \mid mn dkmn是显然的,再由(7)(8)(9)知:

d1kd2k=(dk,m)(dk,n)=(d,m)k(d,n)k d_{1}^{k}d_{2}^{k}=(d^{k},m)(d^{k},n)=(d,m)^{k}(d,n)^{k} d1kd2k=(dk,m)(dk,n)=(d,m)k(d,n)k

我们注意到:

(m,n)=(d1,n)=(d2,m)=1 (m,n)=(d_{1},n)=(d_{2},m)=1 (m,n)=(d1,n)=(d2,m)=1

所以:

d1=(d,m),d2=(d,n) d_{1}=(d,m),d_{2}=(d,n) d1=(d,m),d2=(d,n)

证毕
    \ \\\,\\\,\\\, 

定理1的另一种证明

我们发现定理1和引理2是独立无关的。

我们设 (m,n)=1,d1,d2\ (m,n)=1,d_{1},d_{2} (m,n)=1,d1,d2
 F(mn)=∑d∣mnf(d)=∑d1∣m∑d2∣nf(d1d2)       \ F(mn)= \displaystyle \sum_{d \mid mn}f(d)= \sum_{d_{1} \mid m} \sum_{d_{2} \mid n}f(d_{1}d_{2})\,\,\,\,\,\,\, F(mn)=dmnf(d)=d1md2nf(d1d2)
                     =∑d1∣mf(d1)∑d2∣mf(d2)=F(m)F(n)         (10)\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,= \displaystyle \sum_{d_{1} \mid m} f(d_{1}) \sum_{d_{2} \mid m} f(d_{2})=F(m)F(n)\,\,\,\,\,\,\,\,\,(10) =d1mf(d1)d2mf(d2)=F(m)F(n)(10)

推论3

设积性函数 f(n)\ f(n) f(n),我们有:
∑d∣mμ(d)f(d)=∏p∣n(1−f(p))         (11) \sum_{d \mid m} \mu(d)f(d) =\prod_{p\mid n}(1-f(p))\,\,\,\,\,\,\,\,\,(11) dmμ(d)f(d)=pn(1f(p))(11)

∑d∣nμ2(d)f(n)=∏p∣n(1+f(p))         (12) \sum_{d \mid n} \mu^{2}(d)f(n)= \prod_{p \mid n}(1+f(p))\,\,\,\,\,\,\,\,\,(12) dnμ2(d)f(n)=pn(1+f(p))(12)

这是容易得到的,就不展示证明了。

 f(n)=1n\ f(n)= \frac{1}{n} f(n)=n1,得

∑d∣nμ(d)d=∏p∣n(1−1p)=φ(n)n         (13) \sum_{d \mid n} \frac{\mu (d)}{d}=\prod_{p \mid n}(1- \frac{1}{p})=\frac{\varphi(n)}{n}\,\,\,\,\,\,\,\,\,(13) dndμ(d)=pn(1p1)=nφ(n)(13)

我们也能想到莫比乌斯反演不是对整数成立的。所以我们可以用此优化很多算法包括优化精度。

特别的,取 f(n)=1\ f(n)=1 f(n)=1.

∑d∣nμ(d)={1,   n=10,   n>1(14) \sum_{d \mid n} \mu(d)= \begin{cases} 1,\,\,\,n=1 \\ 0,\,\,\,n>1 \end{cases} \\ (14) dnμ(d)={1,n=10,n>1(14)

定理4

设函数 f(n),F(n)\ f(n),F(n) f(n),F(n),若要使(1)式成立,充要条件3为:

f(n)=∑d∣nμ(d)F(nd)      (15) f(n)= \sum_{d \mid n} \mu(d)F(\frac{n}{d})\,\,\,\,\,\,(15) f(n)=dnμ(d)F(dn)(15)
充分性证明:

∑d∣nf(d)=∑d∣n{∑k∣dμ(k)F(dk)}=∑k∣dμ(k)∑k∣d,d∣nF(dk) \sum_{d \mid n}f(d)=\sum_{d \mid n} \{ \sum_{k \mid d} \mu(k)F(\frac{d}{k}) \}= \sum_{k\mid d}\mu(k) \sum_{k \mid d,d \mid n} F(\frac{d}{k}) dnf(d)=dn{kdμ(k)F(kd)}=kdμ(k)kd,dnF(kd)

 d=kl\ d=kl d=kl,得:
∑d∣nf(d)=∑k∣nμ(k)∑l∣nkF(l)=∑l∣nF(l)∑k∣nlμ(k)=F(n) \sum_{d \mid n}f(d)=\sum_{k \mid n} \mu(k) \sum_{l \mid \frac{n}{k}}F(l)= \sum_{l \mid n}F(l) \sum_{k \mid \frac{n}{l}} \mu(k)=F(n) dnf(d)=knμ(k)lknF(l)=lnF(l)klnμ(k)=F(n)
证毕

必要性有多种方法:

直接带入(15)于(1)
∑d∣nμ(d)F(nd)=∑d∣nμ(d)∑l∣ndf(l)=∑l∣nf(l)∑d∣nlμ(d)=f(n) \sum_{d \mid n} \mu (d)F( \frac{n}{d})=\sum_{d \mid n} \mu(d) \sum_{l \mid \frac{n}{d}}f(l)= \sum_{l \mid n}f(l)\sum_{d \mid \frac{n}{l}} \mu(d)=f(n) dnμ(d)F(dn)=dnμ(d)ldnf(l)=lnf(l)dlnμ(d)=f(n)

证毕

但我们不能看出为什么有(15)这个式子。所以我们要利用(14)来理解:

f(n)=∑k∣nf(nk)∑d∣kμ(d)=∑d∣nμ(d)∑d∣k,k∣nf(nk) f(n)= \sum_{k \mid n}f(\frac{n}{k}) \sum_{d \mid k} \mu(d) = \sum_{d \mid n} \mu(d) \sum_{d \mid k,k \mid n}f(\frac{n}{k}) f(n)=knf(kn)dkμ(d)=dnμ(d)dk,knf(kn)

 k=dl\ k=dl k=dl,得:

f(n)=∑d∣nμ(d)∑l∣ndf(ndl)=∑d∣nμ(d)F(nd) f(n)= \sum_{d \mid n}\mu(d) \sum_{l \mid \frac{n}{d}} f(\frac{n}{dl})=\sum_{d \mid n}\mu(d)F(\frac{n}{d}) f(n)=dnμ(d)ldnf(dln)=dnμ(d)F(dn)

证毕

以上为莫比乌斯翻转公式

定理5

设数论函数 f(n),g(n),h(n)\ f(n),g(n),h(n) f(n),g(n),h(n)
h(n)=∑d∣nf(n)g(nd)         (16) h(n)=\sum_{d \mid n}f(n)g(\frac{n}{d})\,\,\,\,\,\,\,\,\,(16) h(n)=dnf(n)g(dn)(16)

 f(n),g(n)\ f(n),g(n) f(n),g(n)积性时, h(n)\ h(n) h(n)积性。

证明

f(1)=g(1)=1⇒h(1)=1 f(1)=g(1)=1 \Rightarrow h(1)=1 f(1)=g(1)=1h(1)=1

 (m,n)=1\ (m,n)=1 (m,n)=1,利用引理2

h(mn)=∑d∣mnf(d)g(mnd)=∑d1∣m,d2∣nf(d1d2)g(mnd1d2)=h(m)h(n) h(mn)=\sum_{d \mid mn}f(d)g(\frac{mn}{d})=\sum_{d_{1} \mid m,d_{2} \mid n}f(d_{1}d_{2})g(\frac{mn}{d_{1}d_{2}})=h(m)h(n) h(mn)=dmnf(d)g(dmn)=d1m,d2nf(d1d2)g(d1d2mn)=h(m)h(n)

证毕

推论6

 f(n)\ f(n) f(n)积性的充要条件是 F(n)\ F(n) F(n)积性。

证明:

我们显然得知:

f(pa)=F(pa)−F(pa−1) f(p^{a})=F(p^{a})-F(p^{a-1}) f(pa)=F(pa)F(pa1)

几乎瞬间证毕

应用例子
ex1

 F(n)=nt\ F(n)=n^{t} F(n)=nt f(n)\ f(n) f(n)

 F(n)\ F(n) F(n)积性,所以有:

f(pa)=pat−p(a−1)t=pat(a−p−t) f(p^{a})=p^{at}-p^{(a-1)t}=p^{at}(a-p^{-t}) f(pa)=patp(a1)t=pat(apt)

所以有

f(n)=nt∏p∣n(1−p−t) f(n)=n^{t} \prod_{p \mid n}(1-p^{-t}) f(n)=ntpn(1pt)

ex2

 F(n)=φ(n)\ F(n)= \varphi(n) F(n)=φ(n),求 f(n)\ f(n) f(n)

 F(n)\ F(n) F(n)积性,所以有:

f(pa)=φ(pa)−φ(pa−1)={p(1−2p),        a=1pa(1−1p)2,   a>1 f(p^{a})=\varphi(p^{a})-\varphi(p^{a-1})= \begin{cases} p(1-\frac{2}{p}), \,\,\,\,\,\,\,\,a=1 \\ p^{a}(1-\frac{1}{p})^{2}, \,\,\,a>1 \end{cases} f(pa)=φ(pa)φ(pa1)={p(1p2),a=1pa(1p1)2,a>1

ex3

 f(n)=μ2(n)φ(n)\ f(n)=\frac{\mu^{2}(n)}{\varphi(n)} f(n)=φ(n)μ2(n),求 F(n)\ F(n) F(n)

∑d∣paμ2(d)φ(d)=1+1p−1=(1−1p)−1 \sum_{d \mid p^{a}}\frac{\mu^{2}(d)}{\varphi(d)}=1+\frac{1}{p-1}=(1-\frac{1}{p})^{-1} dpaφ(d)μ2(d)=1+p11=(1p1)1

所以得:

∑d∣nμ2(d)φ(d)=∏p∣n(1−1p)−1=nφ(n) \sum_{d \mid n} \frac{\mu^{2}(d)}{\varphi(d)}=\prod_{p \mid n}(1- \frac{1}{p})^{-1}=\frac{n}{\varphi(n)} dnφ(d)μ2(d)=pn(1p1)1=φ(n)n

ex5


f(n,m)=∑in∑jm[(i,j)=1] f(n,m)=\sum_{i}^{n} \sum_{j}^{m}[(i,j)=1] f(n,m)=injm[(i,j)=1]

证明

       f(n,m)=∑in∑jm∑d∣(i,j)μ(d)=∑dμ(d)∑d∣i∑d∣j1=∑dμ(d)[nd][md] \begin{array}{crl} & &\,\,\,\,\,\,\,f(n,m) \\ & &=\sum_{i}^{n}\sum_{j}^{m}\sum_{d \mid (i,j)} \mu(d) \\ & &=\sum_{d} \mu(d) \sum_{d \mid i} \sum_{d \mid j} 1 \\ & &=\sum_{d} \mu(d) \left[ \frac{n}{d}\right] \left[ \frac{m}{d}\right] \end{array} f(n,m)=injmd(i,j)μ(d)=dμ(d)didj1=dμ(d)[dn][dm]

ex5.5


f(n,m)=∑in∑jm(i,j) f(n,m)=\sum_{i}^{n} \sum_{j}^{m}(i,j) f(n,m)=injm(i,j)

证明

       f(n,m)=∑in∑jm∑d∣(i,j)φ(d)=∑dφ(d)∑d∣i∑d∣j1=∑dφ(d)[nd][md] \begin{array}{crl} & &\,\,\,\,\,\,\,f(n,m) \\ & &=\sum_{i}^{n}\sum_{j}^{m}\sum_{d \mid (i,j)} \varphi(d) \\ & &=\sum_{d} \varphi(d) \sum_{d \mid i} \sum_{d \mid j} 1 \\ & &=\sum_{d} \varphi(d) \left[ \frac{n}{d}\right] \left[ \frac{m}{d}\right] \end{array} f(n,m)=injmd(i,j)φ(d)=dφ(d)didj1=dφ(d)[dn][dm]

eeeexxxx5555

设整系数多项式 P(n)\ P(n) P(n) S(n;P(x))\ S(n;P(x)) S(n;P(x))为满足 (P(d),n)=1,   1≤d≤n\ (P(d),n)=1,\,\,\,1 \le d \le n (P(d),n)=1,1dn的个数。

试证明 S(n)=S(n;P(x))\ S(n)=S(n;P(x)) S(n)=S(n;P(x))积性。

利用式(14)

S(n)=∑d=1,(P(d),n)=1n1=∑d=1n∑k∣(P(d),n)μ(k)=∑k∣nμ(k)∑d=1,k∣P(d)n1 S(n)= \sum_{d=1,(P(d),n)=1}^{n}1=\sum_{d=1}^{n}\sum_{k \mid (P(d),n)}\mu(k)= \sum_{k \mid n} \mu(k) \sum_{d=1,k \mid P(d)}^{n}1 S(n)=d=1,(P(d),n)=1n1=d=1nk(P(d),n)μ(k)=knμ(k)d=1,kP(d)n1

 T(k)=T(k;P(x))\ T(k)=T(k;P(x)) T(k)=T(k;P(x))表示以下同余方程的解数:

P(x)≡0(modk) P(x) \equiv 0 \pmod{k} P(x)0(modk)

 k∣n\ k \mid n kn时,有:

∑d=1,k∣P(d)n=nkT(k) \sum_{d=1,k \mid P(d)}^{n}=\frac{n}{k}T(k) d=1,kP(d)n=knT(k)
所以

S(n)=n∑k∣nμ(k)T(k)k S(n)=n \sum_{k \mid n}\frac{ \mu(k)T(k)}{k} S(n)=nknkμ(k)T(k)

显然是积性的。

其他

h(n)=∑d∣nf(d)g(nd) h(n)= \sum_{d \mid n}f(d)g(\frac{n}{d}) h(n)=dnf(d)g(dn)

也写作:

h=f∗g h=f*g h=fg

我们称 h\ h h f\ f f g\ g g狄利克雷卷积,为一种重要卷积形式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值