9、基于数字孪生技术的智能制造探索

数字孪生助力智能制造发展

基于数字孪生技术的智能制造探索

1. 引言

从工业 1.0 到工业 3.0,制造业变得更加自动化、计算机化和复杂。2011 年德国政府提出的工业 4.0,旨在推动制造业智能化,实现更高的效率、生产力和自主性。为实现工业 4.0,美国能源部(DoE)和国家标准与技术研究院(NIST)等机构提出了智能制造的概念。NIST 认为,智能制造是“完全集成的、协作的制造系统,能够实时响应工厂、供应网络和客户需求的变化”。

智能制造的一个关键特征是产品设计、制造和跨工厂的一般协作业务的广泛集成。为实现这些过程的互操作性,工厂中的每个物理设备都需要在网络空间中有一个忠实的虚拟表示。物理实体和虚拟表示以及它们之间的连接构成了网络物理系统(CPS),这是智能制造的关键技术之一,而虚拟表示就是数字孪生(DT)。

DT 在网络空间中不仅是物理实体的抽象,反映其物理状态,还可以被视为物理实体的“大脑”。结合大数据分析和人工智能技术,DT 具备决策能力,有助于提高物理空间中产品或流程的性能。基于 DT 的智能制造在多个方面具有显著优势:
- 缩短上市时间 :产品的 DT 提供了一种有效的方法来应对个性化挑战。
- 增加用户参与度 :作为中间件架构,DT 允许公司和消费者之间进行交互式信息交换。
- 提高可见性 :DT 提供实时更新的高保真模型。通过增强现实(AR)和虚拟现实(VR)技术,操作人员可以更清晰地监控产品和过程。
- 确保最佳运行 :DT 的通信和决策能力为在不同条件下实时优化运营流程提供了可能。

【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制实现有限时间内的共识(Matlab代码实现)内容概要:本文围绕多智能体网络中的事件触发一致性问题,研究如何通过分布式事件驱动控制实现有限时间内的共识,并提供了相应的Matlab代码实现方案。文中探讨了事件触发机制在降低通信负担、提升系统效率方面的优势,重点分析了多智能体系统在有限时间收敛的一致性控制策略,涉及系统模型构建、触发条件设计、稳定性与收敛性分析等核心技术环节。此外,文档还展示了该技术在航空航天、电力系统、机器人协同、无人机编队等多个前沿领域的潜在应用,体现了其跨学科的研究价值和工程实用性。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及从事自动化、智能系统、多智能体协同控制等相关领域的工程技术人员。; 使用场景及目标:①用于理解和实现多智能体系统在有限时间内达成一致的分布式控制方法;②为事件触发控制、分布式优化、协同控制等课题提供算法设计与仿真验证的技术参考;③支撑科研项目开发、学术论文复现及工程原型系统搭建; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注事件触发条件的设计逻辑与系统收敛性证明之间的关系,同时可延伸至其他应用场景进行二次开发与性能优化。
【四旋翼无人机】具备螺旋桨倾斜机构的全驱动四旋翼无人机:建模与控制研究(Matlab代码、Simulink仿真实现)内容概要:本文围绕具备螺旋桨倾斜机构的全驱动四旋翼无人机展开,重点研究其动力学建模与控制系统设计。通过Matlab代码与Simulink仿真实现,详细阐述了该类无人机的运动学与动力学模型构建过程,分析了螺旋桨倾斜机构如何提升无人机的全向机动能力与姿态控制性能,并设计相应的控制策略以实现稳定飞行与精确轨迹跟踪。文中涵盖了从系统建模、控制器设计到仿真验证的完整流程,突出了全驱动结构相较于传统四旋翼在欠驱动问题上的优势。; 适合人群:具备一定控制理论基础和Matlab/Simulink使用经验的自动化、航空航天及相关专业的研究生、科研人员或无人机开发工程师。; 使用场景及目标:①学习全驱动四旋翼无人机的动力学建模方法;②掌握基于Matlab/Simulink的无人机控制系统设计与仿真技术;③深入理解螺旋桨倾斜机构对飞行性能的影响及其控制实现;④为相关课题研究或工程开发提供可复现的技术参考与代码支持。; 阅读建议:建议读者结合提供的Matlab代码与Simulink模型,逐步跟进文档中的建模与控制设计步骤,动手实践仿真过程,以加深对全驱动无人机控制原理的理解,并可根据实际需求对模型与控制器进行修改与优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值