Matlab代码 基于CPO-CNN-LSTM-Attention 5 模型多变量时序预测一键对比(多输出单输出)

目录

1、代码简介

2、代码运行结果展示

3、代码获取


1、代码简介

基于CPO-CNN-LSTM-Attention、CPO-CNN-LSTM、CNN-LSTM、LSTM、CNN五模型多变量时序预测一键对比(仅运行一个main即可) [原创未发表] Matlab代码

可赠送CPO原文献

每个模型的预测结果和组合对比结果都有!

1.无需繁琐步骤,只需要运行一个main即可一键出所有图像。

2.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!

3.CPO优化参数为:隐藏层节点数,学习率,正则化系数

4.CPO作为24年新算法,冠豪猪优化器(Crested Porcupine Optimizer,CPO)。该成果于2024年1月发表在中科院1区SCI期刊Knowledge-Based Systems上。目前没人用,需要论文的抓紧了!这就是机会!表现出较强的性能

5.购买前CPO可以更换为其他的优化算法!需要其他算法的都可以定制!

注:

1️⃣、运行环境要求MATLAB版本为2020b及其以上

2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要

3️⃣、代码中文注释清晰,质量极高

4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白

2、代码运行结果展示

3、代码获取

点击下方了解更多!

【激光质量检测】利用丝杆与步进电机的组合装置带动光源的移动,完成对光源使用切片法测量其光束质量的目的研究(Matlab代码实现)内容概要:本文研究了利用丝杆与步进电机的组合装置带动光源移动,结合切片法实现对激光光源光束质量的精确测量方法,并提供了基于Matlab代码实现方案。该系统通过机械装置精确控制光源位置,采集不同截面的光强分布数据,进而分析光束的聚焦特性、发散角、光斑尺寸等关键质量参数,适用于高精度光学检测场景。研究重点在于硬件控制与图像处理算法的协同设计,实现了自动化、高重复性的光束质量评估流程。; 适合人群:具备一定光学基础知识和Matlab编程能力的科研人员或工程技术人员,尤其适合从事激光应用、光电检测、精密仪器开发等相关领域的研究生及研发工程师。; 使用场景及目标:①实现对连续或脉冲激光器输出光束的质量评估;②为激光加工、医疗激光、通信激光等应用场景提供可靠的光束分析手段;③通过Matlab仿真与实际控制对接,验证切片法测量方案的有效性与精度。; 阅读建议:建议读者结合机械控制原理与光学测量理论同步理解文档内容,重点关注步进电机控制逻辑与切片数据处理算法的衔接部分,实际应用时需校准装置并优化采样间距以提高测量精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值