算法笔记(六)多尺度特征融合之FPN/PANet

本文介绍了多尺度特征融合技术在目标检测中的应用,包括特征金字塔网络FPN的设计思路及实现方式,以及FPN如何与RPN和ROI结合提高检测精度。此外还探讨了PANet在此基础上的改进。

前言

最近论文快deadline了,一直没空更新…今天复习一下多尺度特征融合的常用操作。

1. FPN 特征金字塔

论文:feature pyramid networks for object detection 论文链接

设计思路:

  • 底层的特征语义信息比较少,但是目标位置准确。
  • 高层的特征语义信息比较丰富,但是目标位置比较粗略。

模型设计:自底向上Bottom-up,自顶向下Top-down,横向连接Lateral connection。
在这里插入图片描述

  • 自底向上:特征图随着左半部分的网络的加深,尺寸会不断变小,语义信息会更加丰富,这里是将每个stage(尺寸不变的网络集合为一个stage)的最后一个特征图构成特征金字塔。
  • 自顶向下:通过upsampling的方法,不断放大特征图,使得低层特征也包含丰富的语义信息。
  • 横向连接:将上采样的结果和自底向上生成的相同大小的特征图进行融合。即:从左边过来的特征图,先经过1*1的卷积操作,然后与上面下来的特征图相加(element-wise addition),之后再经过3*3的卷积能得到本层的特征输出(消除上采样产生的混叠效应aliasing effect:插值生成的图像灰度不连续,在灰度变化的地方可能出现明显的锯齿状)。

FPN+RPN

原先的RPN网络,输入的是经过主干网络提取的特征图(单尺度),设置的anchor有3种尺寸,3种宽高比,故有9种anchor:

加入了FPN后,RPN的输入是多尺度特征图,也就是每一层特征图后连接一个RPN head,因为已经有多尺度特征图了,就不需要设置另外3种尺寸,故有15种anchor:

FPN+ROI

ROI的作用是将输入的(检测框,整特征图)进行pooling,得到相同尺寸的目标特征图。使用了FPN之后,就有了多尺度特征图,考虑到实际目标有大有小,所以使用下公式判断将哪一层的特征图输入到ROI中:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nooobme

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值