CF1534F2
发现这是一个 4 4 4 联通问题。我们先考虑建图。
我们需要每一个序列都满足条件,那么我们可以选取最低的点然后考虑其被左右两边影响的区间,也就是左右两边任意掉落一个沙子即可将其掉落。
这个可以使用 d f s dfs dfs 解决。然后我们就得到 n n n 个满足条件的区间。
我们将题目变成了给定 n n n 个区间,选择最少的点使得每一个区间至少有一个点。我们按照左端点为第一关键字,右端点为第二关键字排序。尽量选右边的点即可。
#include <bits/stdc++.h>
using namespace std;
//#define Fread
//#define Getmod
#ifdef Fread
char buf[1 << 21], *iS, *iT;
#define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
#define getchar gc
#endif // Fread
template <typename T>
void r1(T &x) {
x = 0;
char c(getchar());
int f(1);
for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48);
x *= f;
}
#ifdef Getmod
const int mod = 1e9 + 7;
template <int mod>
struct typemod {
int z;
typemod(int a = 0) : z(a) {}
inline int inc(int a,int b) const {return a += b - mod, a + ((a >> 31) & mod);}
inline int dec(int a,int b) const {return a -= b, a + ((a >> 31) & mod);}
inline int mul(int a,int b) const {return 1ll * a * b % mod;}
typemod<mod> operator + (const typemod<mod> &x) const {return typemod(inc(z, x.z));}
typemod<mod> operator - (const typemod<mod> &x) const {return typemod(dec(z, x.z));}
typemod<mod> operator * (const typemod<mod> &x) const {return typemod(mul(z, x.z));}
typemod<mod>& operator += (const typemod<mod> &x) {*this = *this + x; return *this;}
typemod<mod>& operator -= (const typemod<mod> &x) {*this = *this - x; return *this;}
typemod<mod>& operator *= (const typemod<mod> &x) {*this = *this * x; return *this;}
int operator == (const typemod<mod> &x) const {return x.z == z;}
int operator != (const typemod<mod> &x) const {return x.z != z;}
};
typedef typemod<mod> Tm;
#endif
template <typename T,typename... Args> inline void r1(T& t, Args&... args) {
r1(t); r1(args...);
}
//#define int long long
const int maxn = 4e5 + 5;
const int maxm = maxn << 1;
int n, m;
int a[maxn];
#define id(i, j) ((i - 1) * m + j)
char s[maxn];
int L[maxn], R[maxn];
void dfs1(int x,int y,int c) {
if(L[id(x, y)] != -1) return ;
L[id(x, y)] = c;
if(x < n) dfs1(x + 1, y, c);
if(x > 1 && s[id(x - 1, y)] == '#') dfs1(x - 1, y, c);
if(y > 1 && s[id(x, y - 1)] == '#') dfs1(x, y - 1, c);
if(y < m && s[id(x, y + 1)] == '#') dfs1(x, y + 1, c);
}
void dfs2(int x,int y,int c) {
if(R[id(x, y)] != -1) return ;
R[id(x, y)] = c;
if(x < n) dfs2(x + 1, y, c);
if(x > 1 && s[id(x - 1, y)] == '#') dfs2(x - 1, y, c);
if(y > 1 && s[id(x, y - 1)] == '#') dfs2(x, y - 1, c);
if(y < m && s[id(x, y + 1)] == '#') dfs2(x, y + 1, c);
}
int f[maxn];
signed main() {
// freopen("S.in", "r", stdin);
// freopen("S.out", "w", stdout);
int i, j;
memset(L, -1, sizeof(L)), memset(R, -1, sizeof(R));
r1(n, m);
for(i = 1; i <= n; ++ i) {
for(j = 1; j <= m; ++ j) {
cin >> s[id(i, j)];
}
}
for(i = 1; i <= m; ++ i) r1(a[i]);
for(j = 1; j <= m; ++ j) for(i = 1; i <= n; ++ i) if(s[id(i, j)] == '#') dfs1(i, j, j);
for(j = m; j >= 1; -- j) for(i = 1; i <= n; ++ i) if(s[id(i, j)] == '#') dfs2(i, j, j);
// puts("ZZZ");
for(i = 1; i <= m + 1; ++ i) f[i] = m + 2;
for(j = 1; j <= m; ++ j) if(a[j]) {
for(i = n; i; -- i) if(s[id(i, j)] == '#') {
-- a[j];
if(a[j] == 0) {
f[L[id(i, j)]] = min(f[L[id(i, j)]], R[id(i, j)] + 1);
}
}
}
// puts("ZZZ");
int ans(0), pos(1);
for(i = m; i; -- i) f[i] = min(f[i], f[i + 1]);
while(pos <= m + 1) ++ ans, pos = f[pos];
printf("%d\n", ans - 1);
return 0;
}

该博客详细解析了CF1534F2问题,指出其本质是一个4联通问题。通过构建图并采用DFS策略,找到满足条件的区间。接着,将原问题转化为在n个区间中选择最少点,通过排序区间并优先选择右侧点来确保每个区间覆盖。
1181

被折叠的 条评论
为什么被折叠?



