Which Technologies Do Startups Use?


Coding VC

Startups and startup investing from the perspective of a software engineer turned VC.

Which Technologies Do Startups Use? An Exploration of AngelList Data.

There's a lot of hype surrounding new programming languages, databases, and the like. I've always been curious about which technologies are actually in use, and whether great startups use different technologies than not-so-great startups.

Fortunately, AngelList offers some self-reported data about technology usage. For example, you can see thatRobinhood uses Python, Django, and iOS while Secret uses Java, Go, Python, JavaScript, HTML5, CSS, iOS, and Android.

Additionally, AngelList calculates a Signal score for each startup. While it's not 100% clear what this represents, it seems to be some combination of company quality and popularity. For example, these are all of the startups in the Transportation sector, sorted by their Signal scores.

In the interest of openness, there are lots of caveats for this dataset:

  • It's not clear if AngelList Signal is actually correlated with company quality (although it seems to be).
  • Many companies don't report the technologies that they use.
  • The lists of technologies that are self-reported are not necessarily exhaustive.
  • etc.

Limitations aside, I calculated the number of startups with low, medium, and high Signal scores using each of ~75 different technologies, and this post summarizes the results. Whenever I refer to okay/good/great companies, the intended interpretation is companies with low/medium/high AngelList Signal scores.

(Note: you can click on each chart to see a higher resolution version.)

Interpreting the Charts

In each chart, blue represents 'okay' startups, red represents 'good' startups, and orange represents 'great' startups. Within each color, the bars show relative frequencies of technology mentions. For example, let's say we're looking at technologies A and B. If 'okay' companies use B 3x as often as A, 'good' companies use A and B equally often, and 'great' companies use A twice as often as B, then the chart would look like this:

(Note: the ratios of the lengths of blue/orange/red bars are 1:3, 1:1, and 2:1.)

Programming Languages

Observations:

  • For great companies, the most popular languages are Javascript, Ruby, Python, and Java.
  • For okay companies, the most popular languages are Javascript, Ruby, PHP, and Java.
  • The likelihood that PHP is being used is strongly anti-correlated with company quality.
  • The better the company, the more likely it is to be using modern and/or functional programming languages (i.e. Go, Scala, Haskell, Erlang, Clojure).

Front-end Tech

This chart shows a combination of web frameworks (Rails, Django), Javascript Libraries, and HTML/CSS.

Observations:

  • Ruby on Rails is super popular.
  • HTML5 is dominating HTML.
  • CSS is still dominating CSS3.
  • The better the company, the less likely it is to use Bootstrap. 

Databases/Storage/Caching

Observations:

  • MySQL, Mongo, and Postgres dominate the database side.
  • Redis is much more popular than memcached.
  • The better the company, the less likely it is to build on top of Microsoft's products (SQL Server).

Mobile

Observations:

  • Developing for iOS is slightly more popular than developing for Android
  • The gap widens as company quality increases.
  • Windows Mobile (which is not present in the chart) is 30x-50x less popular than iOS and Android among good/great companies.

Infrastructure/Hosting

Observations:
  • AWS and Heroku dominate.
  • The better the company, the more likely it is to use IaaS (e.g. AWS) instead of PaaS (e.g. Parse)
  • The better the company, the less likely it is to build on top of Microsoft's products (Azure).

DevOps Tools


(Note: the sample size here was small because DevOps tools were rarely mentioned on AngelList profiles)

Search

Observations:

  • Elasticsearch dominates this category.

API Integrations

(Note: the sample size here was small because APIs were rarely mentioned on AngelList profiles -- especially for good/great companies.)

Advanced Tech

Observations:

  • I was surprised that there's no clear correlation between quality of company and usage of sophisticated technologies like machine learning or computer vision.

Big Data Software

(Note: small sample size)


If you liked this post, please consider sharing it or subscribing to future posts.


<think>好的,我现在需要帮助用户解决关于Dify循环实现的问题。首先,我需要明确用户的具体需求。他们提到“dify 循环实现”或“dify 如何处理循环”,但Dify本身可能没有直接称为“循环”的功能,所以需要结合现有文档中的信息来推断可能的解决方案。 根据用户提供的引用内容,Dify工作流中有迭代节点[^1]。这可能类似于编程中的循环结构,用于重复执行某个任务。例如,在处理列表数据或需要多次执行同一操作时,迭代节点可以派上用场。我需要详细解释迭代节点的配置和使用步骤,确保用户能够理解如何设置循环次数或遍历数据集。 另外,用户可能对如何处理循环中的错误或性能问题感兴趣。引用[2]提到在Dify中处理PEM文件的问题,这可能涉及在循环中正确处理数据格式,避免错误积累。需要提醒用户在循环中注意错误处理和资源管理,确保每次迭代的稳定性。 引用[3]中的例子展示了如何结合FastAPI和Selenium进行实时监控并生成GIF,这可能涉及循环截取浏览器内容。虽然Dify本身可能不直接控制这类循环,但可以通过外部脚本或定时任务触发工作流,模拟循环执行。这部分需要说明如何将外部循环机制与Dify结合使用。 接下来,我需要组织回答结构。首先介绍迭代节点的基本概念和配置步骤,然后讨论循环中的数据处理和错误处理,最后补充外部触发循环的方法。同时,生成相关问题以帮助用户进一步探索,比如优化循环性能或处理复杂数据结构。 需要确保回答符合格式要求,使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但当前问题不涉及数学公式,所以可能不需要使用。同时,引用标识要自然地添加到相关段落末尾,如、[^2]、[^3]。 最后,检查是否有遗漏点,比如Dify的其他循环相关功能或用户可能遇到的常见问题,确保回答全面且易于理解。</think>在Dify中处理循环逻辑主要通过**迭代节点**实现,以下是具体实现方式和应用场景的解析: ### 一、Dify循环实现机制 Dify通过**工作流设计器**中的迭代节点处理循环需求,其核心原理类似编程中的`for循环`。迭代节点可遍历以下数据类型: - 数组列表:`["A","B","C"]` - 字典集合:`{"key1":"value1", "key2":"value2"}` - 数值范围:通过`range()`函数生成序列 配置示例: ```python # 模拟迭代节点的数据输入 input_data = { "dataset": [1,2,3,4,5], "process_logic": "item * 2" # 对每个元素执行乘以2的操作 } ``` ### 二、迭代节点的关键配置步骤 1. **数据源绑定**:将数组/字典类型变量连接到迭代节点的输入端口 2. **循环变量命名**:设定当前元素的变量名(默认为`item`) 3. **子流程设计**:在迭代节点内部构建需要重复执行的逻辑模块 4. **结果聚合**:通过`outputs`收集所有迭代结果,支持数组或对象格式 $$ \text{总耗时} = \sum_{i=1}^{n}(单次迭代时间_i) + 系统开销 $$ ### 三、循环中的特殊处理 1. **错误中断控制**: - 启用`continueOnError`参数可跳过失败迭代 - 通过`try-catch`模块包裹敏感操作 2. **并行优化**: ```python # 伪代码示例 Parallel.forEach(dataset, lambda item: process(item)) ``` 3. **结果过滤**: ```python filtered = filter(lambda x: x%2==0, processed_results) ``` ### 四、应用场景案例 1. **批量文件处理**:遍历存储桶中的文件列表进行格式转换 2. **数据清洗**:对数据库查询结果集进行逐条校验 3. **API轮询**:定时循环调用第三方接口直到满足特定条件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值