Problem a
题目背景:
分析:DP
额,属于我是真的没有想到这样的状态转移啊······一脸懵逼·····显然一个人在自己前面的有a个,后面有b个,那么这个人的排名区间为[a + 1, n - b]并且,这个区间中所有人的成绩应该相同,定义f[i]表示,排名第i的人的分数不等于第i + 1的分数,那么转移就是f[i] = max(f[i - 1], f[j] + min(i - j, num)) (num表示排名区间为[j + 1, i]的人数)
Source:
/*
created by scarlyw
*/
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <cctype>
#include <vector>
#include <set>
#include <queue>
const int MAXN = 100000 + 10;
struct data {
int l, r;
data(int l = 0, int r = 0) : l(l), r(r) {}
inline bool operator < (const data &a) const {
return (r == a.r) ? (l < a.l) : (r < a.r);
}
} p[MAXN];
int n, x, y, cnt;
int f[MAXN];
inline void solve() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d%d", &x, &y);
if (x + y < n) p[++cnt] = data(x + 1, n - y);
}
std::sort(p + 1, p + cnt + 1);
for (int i = 1, head = 1; i <= n; ++i) {
f[i] = f[i - 1];
int temp = 0;
while (head <= n && p[head].r == i) {
if (p[head].l == p[head - 1].l) temp++;
else temp = 1;
f[i] = std::max(f[i], f[p[head].l - 1] +
std::min(temp, i - p[head].l + 1)), head++;
}
}
printf("%d", n - f[n]);
}
int main() {
solve();
return 0;
}