在基于点积自注意的新空间建模机制的推动下,视觉变形器的最新进展在各种任务中取得了巨大成功。在本文中,我们展示了视觉变形器背后的关键要素,即输入自适应、长距离和高阶空间交互,也可以通过基于卷积的框架有效实现。我们提出了递归门控卷积(gnConv),通过门控卷积和递归设计实现高阶空间交互。gnConv可作为即插即用模块,用于改进各种视觉转换器和基于卷积的模型。在此基础上,我们构建了一个新的通用视觉骨干系列,命名为 HorNet。在ImageNet分类、COCO物体检测和ADE20K语义分割方面的大量实验表明,在整体架构和训练配置相似的情况下,HorNet的性能明显优于Swin Transformers和ConvNeXt。HorNet还显示出良好的可扩展性,可以适应更多的训练数据和更大的模型规模。除了在视觉编码器中的有效性,我们还证明了gnConv 可以应用于特定任务的解码器,并以更少的计算量持续提高密集预测性能。我们的研究结果表明,gnConv 可以成为视觉建模的一个新的基本模块,它有效地结合了视觉变换器和CNN的优点。
如下图所示是本文核心思想图解:通过这张图分析不同操作中特征 (红色块) 和它周围的区域 (灰色块) 的交互。(a) 普通卷积操作不考虑空间的信息交互。(b) 动态卷积操作借助动态权重,考虑周边的区域的信息交互,使得模型性能更强。© Self-attention 操作通过 query,key 和 value 之间的两个连续的矩阵乘法实现了二阶的空间信息交互。(d) 本文所提出的方法可以借助门控卷积和递归操作高效地实现任意阶数的信息交互。可视化建模的基本操作趋势表明,模型的表达能力可以通过增加空间相互作用的阶数来提高。