一、本文介绍
⭐YOLOv11 作为当前主流的单阶段目标检测模型,凭借高效的特征提取与多尺度检测能力,在通用目标检测任务中表现优异,但面对小目标、低对比度目标(如红外小目标、远距离小物体)检测时,仍存在 “大感受野与细粒度特征保留矛盾”“空洞卷积伪影干扰” 等问题。将 HLKConv(分层大核卷积)引入 YOLOv11,可针对性弥补这些短板,同时强化模型在特定场景下的性能与效率。
🔥欢迎订阅我的专栏、带你学习使用最新-最前沿-独家YOLOv11创新改进!🔥
专栏改进目录:YOLOv11改进专栏包含卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、C2PSA/C3k2二次创新改进、全网独家创新等创新点改进
全新YOLOv11-发论文改进专栏链接:全新YOLOv11创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
本文目录
1.首先在ultralytics/nn/newsAddmodules创建一个.py文件
2.在ultralytics/nn/newsAddmodules/__init__.py中引用
🚀 创新改进1: yolov11n_HLKConv.yaml
🚀 创新改进2: yolov11n_HLKConvC3k2.yaml
二、HLKConv分层大核卷积介绍

摘要:设计一个模块或机制,使网络在保持较低参数量和FLOPs的同时,不牺牲精度和吞吐量,仍然是一个挑战。为了解决这一挑战并挖掘特征图通道内的冗余,我们提出了一种新方案:部分通道机制(PCM)。具体而言,通过分割操作,特征图通道被划分为不同部分,每部分对应不同操作,如卷积、注意力、池化和恒等映射。基于这一假设,我们引入了一种新颖的部分注意力卷积(PATConv),可以高效地将卷积与视觉注意力结合。我们的研究表明,PATConv可以完全替代常规卷积和常规视觉注意力,同时降低模型参数和FLOPs。此外,PATConv可以衍生出三种新类型的模块:部分通道注意力模块(PAT ch)、部分空间注意力模块(PAT sp)和部分自注意力模块(PA
订阅专栏 解锁全文
210

被折叠的 条评论
为什么被折叠?



