Robert公式
Robert边缘检测算子采用的是对角方向相邻的两个像素之差。从图像处理的实际效果来看,边缘定位准,对噪声敏感。它是一种利用局部差分算子寻找边缘的算子,由下式给出:
G
(
i
,
j
)
=
[
(
f
(
i
,
j
)
−
f
(
i
+
1
,
j
+
1
)
)
2
+
(
f
(
i
+
1
,
j
)
−
f
(
i
,
j
+
1
)
)
2
]
1
/
2
G(i,j)=\left [ (f(i,j)-f(i+1,j+1))^{2}+(f(i+1,j)-f(i,j+1))^{2}\right ]^{1/2}
G(i,j)=[(f(i,j)−f(i+1,j+1))2+(f(i+1,j)−f(i,j+1))2]1/2
在式子中,
G
(
i
,
j
)
G(i,j)
G(i,j)表示处理后
(
i
,
j
)
(i,j)
(i,j)点的灰度值,
(
f
(
i
,
j
)
(f(i,j)
(f(i,j)是具有整数像素坐标的输入图像。
Matlab源代码
%%%%%%%%%%%%%%%%%%%%%%%%图像的边缘检测,Robert边缘检测算子
clc;
image = imread('D:\1.png');
image_matrix=image(:,:,1);
image_matrix=double(image_matrix);
[height,width,channels]=size(image);
G=zeros(height,width);
for i=1:height-1
for j=1:width-1
G(i,j)=sqrt((image_matrix(i,j)-image_matrix(i+1,j+1))^2+(image_matrix(i+1,j)-image_matrix(i,j+1))^2);
end
end
iamge_out = uint8(G);
%显示
subplot(1,2,1);
imshow(image);
subplot(1,2,2);
imshow(iamge_out);
效果图
横向微分公式
对灰度图像
f
f
f在横向进行微分,在数字处理中,微分用差分表近似,并按照下式求得:
G
(
i
,
j
)
=
f
(
i
,
j
)
−
f
(
i
,
j
−
1
)
G(i,j)=f(i,j)-f(i,j-1)
G(i,j)=f(i,j)−f(i,j−1)
源代码
%%%%%%%%%%%%%%%%%%%%%%%%图像的横向微分检测
clc
image = imread('E:\2.png');
image_matrix=image(:,:,1);
image_matrix=double(image_matrix);
[height,width,channels]=size(image);
G=zeros(height,width);
for i=2:height
for j=2:width
G(i,j)=abs(image_matrix(i,j)-image_matrix(i,j-1));
end
end
iamge_out = uint8(G);
%显示
subplot(1,2,1);
imshow(image);
subplot(1,2,2);
imshow(iamge_out);
效果图
纵向微分公式
对灰度图像
f
f
f在纵向进行微分,在数字处理中,微分用差分表近似,并按照下式求得:
G
(
i
,
j
)
=
f
(
i
,
j
)
−
f
(
i
−
1
,
j
)
G(i,j)=f(i,j)-f(i-1,j)
G(i,j)=f(i,j)−f(i−1,j)
源代码
clc
image = imread('E:\2.png');
image_matrix=image(:,:,1);
image_matrix=double(image_matrix);
[height,width,channels]=size(image);
G=zeros(height,width);
for i=2:height
for j=2:width
G(i,j)=abs(image_matrix(i,j)-image_matrix(i-1,j));
end
end
iamge_out = uint8(G);
%显示
subplot(1,2,1);
imshow(image);
subplot(1,2,2);
imshow(iamge_out);