Langchain-Chatchat在windows平台离线部署(2)
离线模型的准备
如需要将大语言模型放在本地或者离线环境下运行Langchat-chatchat,首先需要将项目所需要的模型下载到本地。
通常可用的开源模型都可使用。在本项目中,使用的是ChatGML3-6B的大语言模型和bge-Large-zh的文本嵌入模型。
相应模型的下载地址如下
LLM模型
Embedding模型
注意
下载后的模型,为了保证能准确的识别,需要放置在项目文件夹下的THUDM文件夹中。
C:\VM\Chatbot\Langchain-Chatchat-master\THUDM
离线模型的配置
项目的模型的配置文件来源于,命名为model_config.py。
C:\VM\Chatbot\Langchain-Chatchat-master\configs
其中需要更新的内容包括:
模型的根目录:MODEL_ROOT_PATH
Embedding 模型的名称:EMBEDDING_MODEL
Embedding 模型运行设备:EMBEDDING_DEVICE
运行的 LLM 名称:LLM_MODELS
LLM 模型运行设备:LLM_DEVICE
本地模型存储位置:MODEL_PATH
本项目中,修改后的配置文件如下:
import os
# 可以指定一个绝对路径,统一存放所有的Embedding和LLM模型。
# 每个模型可以是一个单独的目录,也可以是某个目录下的二级子目录。
# 如果模型目录名称和 MODEL_PATH 中的 key 或 value 相同,程序会自动检测加载,无需修改 MODEL_PATH 中的路径。
MODEL_ROOT_PATH = r"C:\VM\Chatbot\Langchain-Chatchat-master\THUDM"
# 选用的 Embedding 名称
EMBEDDING_MODEL = "bge-large-zh-v1.5"
# Embedding 模型运行设备。设为 "auto" 会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中之一。
EMBEDDING_DEVICE = "cpu"
# 选用的reranker模型
RERANKER_MODEL = "bge-reranker-large"
# 是否启用reranker模型
USE_RERANKER = False
RERANKER_MAX_LENGTH = 1024
# 如果需要在 EMBEDDING_MODEL 中增加自定义的关键字时配置
EMBEDDING_KEYWORD_FILE = "keywords.txt"
EMBEDDING_MODEL_OUTPUT_PATH = "output"
# 要运行的 LLM 名称,可以包括本地模型和在线模型。列表中本地模型将在启动项目时全部加载。
# 列表中第一个模型将作为 API 和 WEBUI 的默认模型。
# 在这里,我们使用目前主流的两个离线模型,其中,chatglm3-6b 为默认加载模型。
# 如果你的显存不足,可使用 Qwen-1_8B-Chat, 该模型 FP16 仅需 3.8G显存。
LLM_MODELS = ["chatglm3-6b"] # ["chatglm3-6b", "zhipu-api", "openai-api"]
Agent_MODEL = None
# LLM 模型运行设备。设为"auto"会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中之一。
LLM_DEVICE = "cpu"
HISTORY_LEN = 3
MAX_TOKENS = 2048
TEMPERATURE = 0.7
ONLINE_LLM_MODEL = {
# 智谱AI API
#"chatglm3-6b": {
# "name": "chatglm3-6b",
# "pretrained_model_name": "THUDM/chatglm2-6b",
# "local_model_path": r"C:\VM\Chatbot\Langchain-Chatchat-master\THUDM\chatglm3-6b",
# "provides": "ChatGLMLLMChain"
#},
}
# 在以下字典中修改属性值,以指定本地embedding模型存储位置。支持3种设置方法:
# 1、将对应的值修改为模型绝对路径
# 2、不修改此处的值(以 text2vec 为例):
# 2.1 如果{MODEL_ROOT_PATH}下存在如下任一子目录:
# - text2vec
# - GanymedeNil/text2vec-large-chinese
# - text2vec-large-chinese
# 2.2 如果以上本地路径不存在,则使用huggingface模型
MODEL_PATH = {
"embed_model": {
"bge-large-zh-v1.5":r"C:\VM\Chatbot\Langchain-Chatchat-master\THUDM\bge-large-zh-v1.5",
},
"llm_model": {
"chatglm3-6b": r"C:\VM\Chatbot\Langchain-Chatchat-master\THUDM\chatglm3-6b",
},
"reranker": {
"bge-reranker-large": "BAAI/bge-reranker-large",
"bge-reranker-base": "BAAI/bge-reranker-base",
}
}
# 通常情况下不需要更改以下内容
# nltk 模型存储路径
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
# 使用VLLM可能导致模型推理能力下降,无法完成Agent任务
VLLM_MODEL_DICT = {
"chatglm2-6b": "THUDM/chatglm2-6b",
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k",
"chatglm3-6b": "THUDM/chatglm3-6b",
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k",
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf",
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf",
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf",
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat",
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat",
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat",
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
"baichuan2-7b-chat": "baichuan-inc/Baichuan-7B-Chat",
"baichuan2-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat",
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k",
"internlm-7b": "internlm/internlm-7b",
"internlm-chat-7b": "internlm/internlm-chat-7b",
"internlm2-chat-7b": "internlm/Models/internlm2-chat-7b",
"internlm2-chat-20b": "internlm/Models/internlm2-chat-20b",
"aquila-7b": "BAAI/Aquila-7B",
"aquilachat-7b": "BAAI/AquilaChat-7B",
"falcon-7b": "tiiuae/falcon-7b",
"falcon-40b": "tiiuae/falcon-40b",
"falcon-rw-7b": "tiiuae/falcon-rw-7b",
"gpt2": "gpt2",
"gpt2-xl": "gpt2-xl",
"gpt-j-6b": "EleutherAI/gpt-j-6b",
"gpt4all-j": "nomic-ai/gpt4all-j",
"gpt-neox-20b": "EleutherAI/gpt-neox-20b",
"pythia-12b": "EleutherAI/pythia-12b",
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"dolly-v2-12b": "databricks/dolly-v2-12b",
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b",
"open_llama_13b": "openlm-research/open_llama_13b",
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3",
"koala": "young-geng/koala",
"mpt-7b": "mosaicml/mpt-7b",
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter",
"mpt-30b": "mosaicml/mpt-30b",
"opt-66b": "facebook/opt-66b",
"opt-iml-max-30b": "facebook/opt-iml-max-30b",
}
SUPPORT_AGENT_MODEL = [
#"openai-api", # GPT4 模型
#"qwen-api", # Qwen Max模型
#"zhipu-api", # 智谱AI GLM4模型
#"Qwen", # 所有Qwen系列本地模型
"chatglm3-6b",
#"internlm2-chat-20b",
#"Orion-14B-Chat-Plugin",
]