题目来源:poj 2031
思路:
依次计算两个球体球心之间的距离,如果距离小于或者等于两个球体半径的大小,则设两个球体的距离为0。否则为两个球体球心的距离减去两个球体半径之和。
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 100;
const int maxm = 5100;
struct edge
{
int u, v;
double w;
edge() {}
edge(int _u, int _v, double _w) : u(_u), v(_v), w(_w) {}
} E[maxm];
struct node
{
double x, y, z;
double r;
} V[maxn];
bool cmp(edge e1, edge e2)
{
return e1.w < e2.w;
}
//并查集部分
int father[maxn];
int find(int x)
{
if (x == father[x])
{
return x;
}
else
{
int F = find(father[x]);
father[x] = F;
return F;
}
}
//kruskal部分
double kruskal(int n, int m)
{
double ans = 0; //所求边权之和
int num_edge = 0; //当前生成树包含的边的数目
for (int i = 0; i < n; i++) //并查集初始化,顶点编号范围是[1,n]!!!
{
father[i] = i;
}
sort(E, E + m, cmp);
for (int i = 0; i < m; i++)
{
int faU = find(E[i].u);
int faV = find(E[i].v);
if (faU != faV)
{
father[faU] = faV; //合并集合,即把测试边加入最小生成树中
num_edge++;
ans += E[i].w;
if (num_edge == n - 1)
{
break;
}
}
}
if (num_edge != n - 1)
{
return 0; //无法连通时返回0
}
else
{
return ans;
}
}
double dist(node n1, node n2)
{
return sqrt((n1.x - n2.x) * (n1.x - n2.x) + (n1.y - n2.y) * (n1.y - n2.y) + (n1.z - n2.z) * (n1.z - n2.z));
}
int main()
{
int n;
while (cin >> n && n != 0)
{
for (int i = 0; i < n; i++)
{
cin >> V[i].x >> V[i].y >> V[i].z >> V[i].r;
}
int count = 0;
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
double dis = dist(V[i], V[j]);
if (dis <= V[i].r + V[j].r)
{
E[count++] = edge(i, j, 0);
}
else
{
E[count++] = edge(i, j, dis - V[i].r - V[j].r) ;
}
}
}
printf("%.3f\n", kruskal(n, count));
}
return 0;
}