【归档】Prove that the set of continuous real-valued functions on the interval [0, 1] is a subspace...

本文详细证明了[0,1]区间上的连续实值函数集构成R^[0,1]的一个子空间。通过验证加法单位元、加法封闭性和标量乘法封闭性,展示了函数集合满足子空间定义的条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。


Prove that the set of continuous real-valued functions on the interval [0, 1] is a subspace of R[0,1]R^{[0, 1]}R[0,1]

Note Before Proof: 证明一个集合是另外一个集合的子空间,只要证明这个集合具有加法单位元0、加法封闭性、标量乘法封闭性即可。
Prove:
Let V = {f∣f:[0,1]→Rf | f: [0, 1] \rightarrow Rff:[0,1]R such that f is continuous}.
Part 1, additive identity(加法单位元):
Take f0=0(∀x∈[0,1])f_{0} = 0 (\forall x \in [0, 1])f0=0(x[0,1]). Clearly f0f_{0}f0 is continuous and f0∈Vf_{0} \in Vf0V.
Part 2, closed under addition(加法封闭性):
Take f,g∈Vf, g \in Vf,gV.
For each ϵ>0\epsilon > 0ϵ>0 and for each x∈[0,1]x \in [0, 1]x[0,1] there exists a δ>0\delta > 0δ>0. Such that if ∣x1−x2∣<δ|x_{1} - x_{2}| < \deltax1x2<δ, then ∣f(x1)−f(x2)∣<ϵ2|f(x_{1}) - f(x_{2})| < \frac{\epsilon}{2}f(x1)f(x2)<2ϵ, and ∣g(x1)−g(x2)∣<ϵ2|g(x_{1}) - g(x_{2})| < \frac{\epsilon}{2}g(x1)g(x2)<2ϵ.
Since f+g=(f+g)(x)=f(x)+g(x)f + g = (f + g)(x) = f(x) + g(x)f+g=(f+g)(x)=f(x)+g(x), we have
∣(f+g)(x1)−(f+g)(x2)∣=∣[f(x1)−f(x2)]+[g(x1)−g(x2)]∣≤∣[f(x1)−f(x2)]∣+∣[g(x1)−g(x2)]∣<ϵ.\begin{aligned} & |(f + g)(x_{1}) - (f + g)(x_{2})|\\= & |[f(x_{1}) - f(x_{2})] + [g(x_{1}) - g(x_{2})]|\\ \le & |[f(x_{1}) - f(x_{2})]| + |[g(x_{1}) - g(x_{2})]|\\< & \epsilon.\end{aligned}=<(f+g)(x1)(f+g)(x2)[f(x1)f(x2)]+[g(x1)g(x2)][f(x1)f(x2)]+[g(x1)g(x2)]ϵ.
i.e. f+gf + gf+g is continuous at all x∈[0,1]x \in [0, 1]x[0,1].
Therefor, f+g∈Vf + g \in Vf+gV.
Part 3, closed under scalar multiplication(标量乘法封闭性):
Take f∈Vf \in VfV, and a∈Ra \in RaR.
Assume a= 0, then
(af)(x)=a⋅f(x)=0,x∈[0,1](af)(x) = a \cdot f(x) = 0, x \in [0, 1](af)(x)=af(x)=0,x[0,1].
Clearly, afafaf is a continuous real-valued function on the interval [0, 1].
Assume a≠0a \neq 0a=0, for each ϵ>0\epsilon > 0ϵ>0 and for each x∈[0,1]x \in [0, 1]x[0,1], there exists a δ>0\delta > 0δ>0 such that if
∣x1−x2∣<δ|x_{1} - x_{2}| < \deltax1x2<δ,
then
∣f(x1)−f(x2)∣<ϵa|f(x_{1}) - f(x_{2})| < \frac{\epsilon}{a}f(x1)f(x2)<aϵ.
Now we have
∣(af)(x1)−(af)(x2)∣=∣a[f(x1)−f(x2)]∣=∣a∣⋅∣f(x1)−f(x2)∣<ϵ|(af)(x_{1}) - (af)(x_{2})| = |a[f(x_{1}) - f(x_{2})]| = |a|\cdot|f(x_{1}) - f(x_{2})| < \epsilon(af)(x1)(af)(x2)=a[f(x1)f(x2)]=af(x1)f(x2)<ϵ.
Therefor, af∈Vaf \in VafV.
Thus V is a subspace of R[0,1]R^{[0, 1]}R[0,1].

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值