Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。
There are two question to be solved:
- Is {(a,b,c)∈R3:a3=b3(a, b, c) \in \mathbb{R}^3 : a^3 = b^3(a,b,c)∈R3:a3=b3} a subspace of R3\mathbb{R}^3R3?
- Is {(a,b,c)∈C3:a3=b3(a, b, c) \in \mathbb{C}^3 : a^3 = b^3(a,b,c)∈C3:a3=b3} a subspace of C3\mathbb{C}^3C3?
Solution to question 1:
Let VVV = {(a,b,c)∈R3:a3=b3(a, b, c) \in \mathbb{R}^3 : a^3 = b^3(a,b,c)∈R3:a3=b3}.
Part 1, additive identity:
Obviously 0=(0,0,0)∈V0 = (0, 0, 0) \in V0=(0,0,0)∈V.
Part 2, closed under addition:
Take u,w∈V,u=(u1,u2,u3)u, w \in V, u = (u_1, u_2, u_3)u,w∈V,u=(u1,u2,u3) and w=(w1,w2,w3)w = (w_1, w_2, w_3)w=(w1,w2,w3).
We have u13=u23,w13=w23u_1^3 = u_2^3, w_1^3 = w_2^3u13=u23,w13=w23.
Thus u1=u2,w1=w2u_1 = u_2, w_1 = w_2u1=u2,w1=w2 (1-2-1).
Now we have u+w=(u1+w1,u2+w2,u3+w3)u + w = (u_1 + w_1, u_2 + w_2, u_3 + w_3)u+w=(u1+w1,u2+w2,u3+w3).
According to formulas (1-2-1), we get u1+w1=u2+w2u_1 + w_1 = u_2 + w_2u1+w1=u2+w2
(i.e. (u1+w1)3=(u2+w2)3(u_1 + w_1)^3 = (u_2 + w_2)^3(u1+w1)3=(u2+w2)3).
Therefor u+w∈Vu + w \in Vu+w∈V.
Part 3, closed under scalar multiplication:
Take u∈V,u=(u1,u2,u3),u \in V, u = (u_1, u_2, u_3),u∈V,u=(u1,u2,u3), and a∈Ra \in \mathbb{R}a∈R.
We have au=a(u1,u2,u3)=(au1,au2,au3)au = a(u_1, u_2, u_3) = (au_1, au_2, au_3)au=a(u1,u2,u3)=(au1,au2,au3).
Clearly, (au1)3=(au2)3↔u13=u23(au_1)^3 = (au_2)^3 \leftrightarrow u_1^3 = u_2^3(au1)3=(au2)3↔u13=u23.
Therefor au∈Vau \in Vau∈V.
Therefor {(a,b,c)∈R3:a3=b3(a, b, c) \in \mathbb{R}^3 : a^3 = b^3(a,b,c)∈R3:a3=b3} is a subspace of R3\mathbb{R}^3R3.
Solution to question 2:
The key to the answer of this question is that for a,b∈Ca, b \in \mathbb{C}a,b∈C, we can’t deduce a=ba = ba=b from a3=b3a^3 = b^3a3=b3. Therefor, if we take
u,w∈u, w \inu,w∈ {(a,b,c)∈C3:a3=b3(a, b, c) \in \mathbb{C}^3 : a^3 = b^3(a,b,c)∈C3:a3=b3},
and assume u=(u1,u2,u3),v=(v1,v2,v3)u = (u_1, u_2, u_3), v = (v_1, v_2, v_3)u=(u1,u2,u3),v=(v1,v2,v3), we can’t deduce (u1+v1)3=(u2+v2)3(u_1 + v_1)^3 = (u_2 + v_2)^3(u1+v1)3=(u2+v2)3 from u13=u23andv13=v23u_1^3 = u_2^3 and v_1^3 = v_2^3u13=u23andv13=v23.
Thus {(a,b,c)∈C3:a3=b3(a, b, c) \in \mathbb{C}^3 : a^3 = b^3(a,b,c)∈C3:a3=b3} isn’t closed under addition.
i.e. {(a,b,c)∈C3:a3=b3(a, b, c) \in \mathbb{C}^3 : a^3 = b^3(a,b,c)∈C3:a3=b3} is a subspace of C3\mathbb{C}^3C3.