【归档】What is the square root of i?

本文详细解析了如何求解复数i的平方根,通过设置z=a+bi,利用实部与虚部相等的条件,求解得到两组解,分别为a=b=1/√2和a=b=-1/√2。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。


Solution:
Let z=a+biz = a + biz=a+bi be the complex number which is a square root of i, that is
z2=(a+bi)2=a2−b2+2abi=iz^{2} = (a + bi)^{2} = a^{2} - b^{2} + 2abi = iz2=(a+bi)2=a2b2+2abi=i
Equating real and imaginary parts, we have
{a2−b2=0,2ab=1.\begin{cases} a^{2} - b^{2} & = 0,\\ 2ab & = 1.\end{cases}{a2b22ab=0,=1.
The two real solution to this pair of equations are
{a=12,b=12,\begin{cases} a = \frac{1}{\sqrt{2}},\\ b = \frac{1}{\sqrt{2}},\end{cases}{a=21,b=21,
and
{a=−12,b=−12.\begin{cases} a = -\frac{1}{\sqrt{2}},\\ b = -\frac{1}{\sqrt{2}}.\end{cases}{a=21,b=21.
The two square root of i therefor are ±12(i+1)\pm\frac{1}{\sqrt{2}}(i + 1)±21(i+1).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值