Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。
Solution:
Let z=a+biz = a + biz=a+bi be the complex number which is a square root of i, that is
z2=(a+bi)2=a2−b2+2abi=iz^{2} = (a + bi)^{2} = a^{2} - b^{2} + 2abi = iz2=(a+bi)2=a2−b2+2abi=i
Equating real and imaginary parts, we have
{a2−b2=0,2ab=1.\begin{cases} a^{2} - b^{2} & = 0,\\ 2ab & = 1.\end{cases}{a2−b22ab=0,=1.
The two real solution to this pair of equations are
{a=12,b=12,\begin{cases} a = \frac{1}{\sqrt{2}},\\ b = \frac{1}{\sqrt{2}},\end{cases}{a=21,b=21,
and
{a=−12,b=−12.\begin{cases} a = -\frac{1}{\sqrt{2}},\\ b = -\frac{1}{\sqrt{2}}.\end{cases}{a=−21,b=−21.
The two square root of i therefor are ±12(i+1)\pm\frac{1}{\sqrt{2}}(i + 1)±21(i+1).