设正实数 a、b、ca、b、ca、b、c 满足 ab+bc+ca=13.ab+bc+ca=\frac13.ab+bc+ca=31. 证明:
aa2−bc+1+bb2−ac+1+cc2−ab+1≥1a+b+c\frac a{a^2-bc+1}+\frac b{b^2-ac+1}+\frac c{c^2-ab+1}\geq\frac1{a+b+c}a2−bc+1a+b2−ac+1b+c2−ab+1c≥a+b+c1
证明
\qquad等式右边的分母显然为正数.
\qquad由柯西不等式得
\qquadaa2−bc+1+bb2−ac+1+cc2−ab+1=a2a3−abc+a+b2b3−abc+b+c2c3−abc+c\frac a{a^2-bc+1}+\frac b{b^2-ac+1}+\frac c{c^2-ab+1}=\frac{a^2}{a^3-abc+a}+\frac{b^2}{b^3-abc+b}+\frac{c^2}{c^3-abc+c}a2−bc+1a+b2−ac+1b+c2−ab+1c=a3−abc+aa2+b3−abc+bb2+c3−abc+cc2
\qquad≥(a+b+c)2a3+b3+c3+a+b+c−3abc=(a+b+c)2(a+b+c)(a2+b2+c2−ab−bc−ca)+(a+b+c)\geq\frac{(a+b+c)^2}{a^3+b^3+c^3+a+b+c-3abc}=\frac{(a+b+c)^2}{(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+(a+b+c)}≥a3+b3+c3+a+b+c−3abc(a+b+c)2=(a+b+c)(a2+b2+c2−ab−bc−ca)+(a+b+c)(a+b+c)2
\qquad=a+b+ca2+b2+c2−ab−bc−ca+1=a+b+ca2+b2+c2+2(ab+bc+ca)=1a+b+c.=\frac{a+b+c}{a^2+b^2+c^2-ab-bc-ca+1}=\frac{a+b+c}{a^2+b^2+c^2+2(ab+bc+ca)}=\frac1{a+b+c}.=a2+b2+c2−ab−bc−ca+1a+b+c=a2+b2+c2+2(ab+bc+ca)a+b+c=a+b+c1.
\qquad命题得证.