设 x、y、zx、y、zx、y、z 为大于 −1-1−1 的实数.证明:
1+x21+y+z2+1+y21+z+x2+1+z21+x+y2≥2.\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\geq2.1+y+z21+x2+1+z+x21+y2+1+x+y21+z2≥2.
\qquad证明\quad由已知得
1+x2、1+y2、1+z2、1+y+z2、1+z+x2、1+x+y21+x^2、1+y^2、1+z^2、1+y+z^2、1+z+x^2、1+x+y^21+x2、1+y2、1+z2、1+y+z2、1+z+x2、1+x+y2
均大于000.
\qquad由柯西不等式得
(1+x21+y+z2+1+y21+z+x2+1+z2z+x+y2)(\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{z+x+y^2})(1+y+z21+x2+1+z+x21+y2+z+x+y21+z2)
⋅[(1+x2)(1+y+z2)+(1+y2)(1+z+x2)+(1+z2)(1+x+y2)]\cdot[(1+x^2)(1+y+z^2)+(1+y^2)(1+z+x^2)+(1+z^2)(1+x+y^2)]⋅[(1+x2)(1+y+z2)+(1+y2)(1+z+x2)+(1+z2)(1+x+y2)]
≥(1+x2+1+y2+1+z2)2.\geq(1+x^2+1+y^2+1+z^2)^2.≥(1+x2+1+y2+1+z2)2.
\qquad故 1+x21+y+z2+1+y21+z+x2+1+z21+x+y2\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}1+y+z21+x2+1+z+x21+y2+1+x+y21+z2
≥(x2+y2+z2+3)2(1+x2)(1+y+z2)+(1+y2)(1+z+x2)+(1+z2)(1+x+y2)\geq\frac{(x^2+y^2+z^2+3)^2}{(1+x^2)(1+y+z^2)+(1+y^2)(1+z+x^2)+(1+z^2)(1+x+y^2)}≥(1+x2)(1+y+z2)+(1+y2)(1+z+x2)+(1+z2)(1+x+y2)(x2+y2+z2+3)2
=x4+y4+z4+9+2x2y2+2y2z2+2z2x2+6x2+6y2+6z2x2y2+y2z2+z2x2+2(x2+y2+z2)+x2y+y2z+z2x+x+y+z+3=\frac{x^4+y^4+z^4+9+2x^2y^2+2y^2z^2+2z^2x^2+6x^2+6y^2+6z^2}{x^2y^2+y^2z^2+z^2x^2+2(x^2+y^2+z^2)+x^2y+y^2z+z^2x+x+y+z+3}=x2y2+y2z2+z2x2+2(x2+y2+z2)+x2y+y2z+z2x+x+y+z+3x4+y4+z4+9+2x2y2+2y2z2+2z2x2+6x2+6y2+6z2
=2+x4+y4+z4+3+2x2+2y2+2z2−2(x2y+y2z+z2x+x+y+z)x2y2+y2z2+z2x2+2(x2+y2+z2)+x2y+y2z+z2x+x+y+z+3=2+\frac{x^4+y^4+z^4+3+2x^2+2y^2+2z^2-2(x^2y+y^2z+z^2x+x+y+z)}{x^2y^2+y^2z^2+z^2x^2+2(x^2+y^2+z^2)+x^2y+y^2z+z^2x+x+y+z+3}=2+x2y2+y2z2+z2x2+2(x2+y2+z2)+x2y+y2z+z2x+x+y+z+3x4+y4+z4+3+2x2+2y2+2z2−2(x2y+y2z+z2x+x+y+z)
=2+(x2−y)2+(y2−z)2+(z2−x)2+(x−1)2+(y−1)2+(z−1)2x2y2+y2z2+z2x2+2(x2+y2+z2)+x2y+y2z+z2x+x+y+z+3=2+\frac{(x^2-y)^2+(y^2-z)^2+(z^2-x)^2+(x-1)^2+(y-1)^2+(z-1)^2}{x^2y^2+y^2z^2+z^2x^2+2(x^2+y^2+z^2)+x^2y+y^2z+z^2x+x+y+z+3}=2+x2y2+y2z2+z2x2+2(x2+y2+z2)+x2y+y2z+z2x+x+y+z+3(x2−y)2+(y2−z)2+(z2−x)2+(x−1)2+(y−1)2+(z−1)2
≥2.\geq2.≥2.
当且仅当 x=y=z=1x=y=z=1x=y=z=1 时,上式等号成立.