求所有的素数 ppp ,使得
p2∣∑k=1p−1k2p+1 p^2|\sum_{k=1}^{p-1}k^{2p+1}p2∣k=1∑p−1k2p+1
解:
由于 22̸∣12^2 \not |122̸∣1 , 故 p=2p=2p=2 不满足条件.
以下设 ppp 为奇素数.
对 k=1,2,⋯ ,p−12,k=1,2,\cdots,\frac{p-1}2,k=1,2,⋯,2p−1, 由费马小定理知
k2p≡k2(modp)k^{2p}\equiv k^2\pmod pk2p≡k2(modp).
故k2p+1+(p−k)2p+1≡k2p+1+(2p+1)pk2p−k2p+1k^{2p+1}+(p-k)^{2p+1}\equiv k^{2p+1}+(2p+1)pk^{2p}-k^{2p+1}k2p+1+(p−k)2p+1≡k2p+1+(2p+1)pk2p−k2p+1≡pk2p≡pk2(modp2).\equiv pk^{2p}\equiv pk^2\pmod {p^2}.≡pk2p≡pk2(modp2).
求和知:
∑k=1p−1k2p+1≡p∑k−1p−12k2=p2⋅p2−124(modp2). \sum_{k=1}^{p-1}k^{2p+1}\equiv p\sum_{k-1}^{\frac {p-1}2}k^2=p^2\cdot\frac{p^2-1}{24}\pmod{p^2}.k=1∑p−1k2p+1≡pk−1∑2p−1k2=p2⋅24p2−1(modp2).
当且仅当24∣(p2−1)\quad24\mid(p^2-1)24∣(p2−1) 时,p2∣∑k=1p−1k2p+1.p^2\mid\sum_{k=1}^{p-1}k^{2p+1}.p2∣k=1∑p−1k2p+1.
显然,p̸=3.\quad p\not=3.p̸=3.
当p≥5\quad p\geq5p≥5 ,时
p2−1=(p+1)(p−1)p^2-1=(p+1)(p-1)p2−1=(p+1)(p−1) 必为3和8的倍数,
故 24∣(p2−1)\quad24\mid(p^2-1)24∣(p2−1).
综上,所求 ppp 为一切大于3 的素数.