思路:通过n=1的时候枚举a求出b,然后通过n=2的时候验证是否成立
#include<bits/stdc++.h>
using namespace std;
#define LL long long
LL C,k1,b1,k2;
LL qpow(LL x,LL n,LL mod)
{
LL ans=1;
while(n>0)
{
if(n&1) ans=(ans*x)%mod;
x=(x*x)%mod;
n>>=1;
}
return ans;
}
int main()
{
int T,cas=1;
while(scanf("%lld%lld%lld%lld",&C,&k1,&b1,&k2)!=EOF)
{
int flag = 0;
printf("Case #%d:\n",cas++);
for(LL a = 1;a<C;a++)
{
LL b = C-qpow(a,k1+b1,C);
LL x = qpow(a,2*k1+b1,C);
LL y = qpow(b,k2+1,C);
if((x+y)%C==0)
{
printf("%lld %lld\n",a,b);
flag = 1;
}
}
if(!flag)
printf("-1\n");
}
}
Problem Description
Given a prime number
C(1≤C≤2×105)
, and three integers k1, b1, k2
(1≤k1,k2,b1≤109)
. Please find all pairs (a, b) which satisfied the equation
ak1⋅n+b1
+
bk2⋅n−k2+1
= 0 (mod C)(n = 1, 2, 3, ...).
Input
There are multiple test cases (no more than 30). For each test, a single line contains four integers C, k1, b1, k2.
Output
First, please output "Case #k: ", k is the number of test case. See sample output for more detail.
Please output all pairs (a, b) in lexicographical order. (1≤a,b<C) . If there is not a pair (a, b), please output -1.
Please output all pairs (a, b) in lexicographical order. (1≤a,b<C) . If there is not a pair (a, b), please output -1.
Sample Input
23 1 1 2
Sample Output
Case #1: 1 22
Source