hdu5476 Explore Track of Point(数学)

本文探讨了一个有趣的几何问题:已知等腰三角形ΔABC中,AB=AC,M为BC中点,点P位于三角形内,使得min{∠MPB+∠APC, ∠MPC+∠APB}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:一道纯平面几何题....显然AM是成立的,然后猜测剩下的是与AB,AC相切的圆的劣弧...就做完了...


#include<bits/stdc++.h>
using namespace std;
double dis(double x1,double y1,double x2,double y2)
{
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
    int T,cas=1;
    scanf("%d",&T);
    while(T--)
    {
        printf("Case #%d: ",cas++);
        double ax,ay,bx,by,cx,cy;
        scanf("%lf%lf%lf%lf%lf%lf",&ax,&ay,&bx,&by,&cx,&cy);
        double mx = (cx+bx)/2;
        double my = (cy+by)/2;
        double am = dis(ax,ay,mx,my);
        double r = dis(bx,by,mx,my)/dis(ax,ay,mx,my)*dis(ax,ay,bx,by);
        double ang = atan(dis(ax,ay,bx,by)/r);
        printf("%.4f\n",am+2*ang*r);  
    }
}


Problem Description
In Geometry, the problem of track is very interesting. Because in some cases, the track of point may be beautiful curve. For example, in polar Coordinate system,ρ=cos3θ is like rose, ρ=1sinθ is a Cardioid, and so on. Today, there is a simple problem about it which you need to solve.

Give you a triangle ΔABC and AB = AC. M is the midpoint of BC. Point P is in ΔABC and makes min{MPB+APC,MPC+APB} maximum. The track of P is Γ. Would you mind calculating the length of Γ?

Given the coordinate of A, B, C, please output the length of Γ.
 

Input
There are T (1T104) test cases. For each case, one line includes six integers the coordinate of A, B, C in order. It is guaranteed that AB = AC and three points are not collinear. All coordinates do not exceed 104 by absolute value.
 

Output
For each case, first please output "Case #k: ", k is the number of test case. See sample output for more detail. Then, please output the length of Γ with exactly 4 digits after the decimal point.
 

Sample Input
1 0 1 -1 0 1 0
 

Sample Output
Case #1: 3.2214
 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值