本文对比四篇论文:
[1] Gaussian Splatting SLAM
[2] SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM
[3] Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting
[4] GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting
一、文章概括
[1] Gaussian Splatting SLAM
这篇论文主要解决的是RGB-D或单目相机的三维重建问题。
1. 相机追踪(Tracking)
在估计相机外参时,该方法最小化以下目标函数:
其中 λ p h o \lambda_{pho} λpho是权重超参数,
,
。
I ( G , T C W ) I(\mathcal{G},\boldsymbol{T}_{CW}) I(G,TCW)表示从外参为 T C W \boldsymbol{T}_{CW} TCW的相机渲染高斯集合 G \mathcal{G} G所得的图片, I ˉ \bar{I} Iˉ是真实图片; E p h o E_{pho} Epho为图片误差。
E g e o E_{geo} Egeo为深度误差,仅在深度信息可用时引入, D ( G , T C W ) D(\mathcal{G},\boldsymbol{T}_{CW}) D(G,TCW)是渲染出来的深度(渲染方式和RGB值类似,均为按不透明度和透光率加权平均), D ˉ \bar{D} Dˉ是深度数据。
2. 关键帧选取(Keyframing)
该方法选取关键帧窗口 W k \mathcal{W}_k Wk,选取依据是两帧之间共同可见Gaussians的比例(判断Gaussian是否可见的方法就是判断到该Gaussian的透光率是否达到0.5)。定义共同可见度(covisibility)为当前帧 i i i与上一个关键帧 j j j之间可见Gaussians集合的IoU。若共同可见度低于某个阈值,或相对平移 t i j t_{ij} tij相对于深度中位数较大,则帧 i i i被视为关键帧。
同时,在当前帧 i i i被加入关键帧窗口时,也要移除 W k \mathcal{W}_k Wk中已经陈旧的关键帧。当帧 j ∈ W k j\in\mathcal{W}_k j∈Wk与当前帧 i i i可见Gaussians的重叠系数(OC, Overlapping Coefficient)小于某个阈值时,就将其移除。OC的定义如下:

3. Gaussian的新增和删除
每个关键帧都会添加新Gaussians。该方法用关键帧中每个像素点的深度 D D D(在单目相机的情形该方法会渲染深度来估计 D D D的值)作为新增Gaussians的参考位置。由于 D D D不一定准确,新Gaussians的深度服从一个均值为 D D D、方差较小的正态分布;对于没有深度估计的像素,新Gaussians的深度服从均值为渲染图像深度中位数、方差较大的正态分布。在一开始还没有Gaussian时,新增Gaussian的位置是随机的。
当关键帧窗口 W k \mathcal{W}_k Wk已满,该方法执行删除操作。如果最近三个关键帧内新增的Gaussians没有在其他至少三帧内观察到,那就将它们移除。不透明度小于 0.7 0.7 0.7的Gaussians也会被移除。
4. 三维重建
这部分的目的是维持一个协调的3D结构并优化新插入的Gaussians。参与优化的帧集合为 W = W k ∪ W r \mathcal{W}=\mathcal{W}_k\cup \mathcal{W}_r W=Wk∪Wr,其中 W r \mathcal{W}_r Wr是随机选取的两个以往的帧。3D Gaussians的渲染过程没有对沿光线方向的Gaussian进行约束,这可能会导致SLAM过程中出现伪影。因此,该方法惩罚“拉得太长”的Gaussians,方法是引入各向同性约束(isotropic regularization):
其中 s i \mathbf{s}_i si是第 i i i个Gaussian的缩放参数, s ~ i \tilde{\mathbf{s}}_i s~i是其在各个方向的均值。
对于三维重建部分,该方法求解以下最优化问题: min T C W k ∈ S E ( 3 ) ∀ k ∈ W , G ∑ ∀ k ∈ W E p h o k + λ i s o E i s o \min\limits_{\underset{\forall k\in\mathcal{W}}{\boldsymbol{T}_{CW}^k\in\mathbf{SE}(3)},\mathcal{G}} \sum\limits_{\forall k\in\mathcal{W}}E_{pho}^k+\lambda_{iso}E_{iso} ∀k∈WTCWk∈SE(3),Gmin∀k∈W∑Ephok+λ

本文对比了四篇高斯SLAM相关论文,包括Gaussian Splatting SLAM、SplaTAM、Gaussian - SLAM和GS - SLAM。介绍了各论文方法的具体步骤,分析了它们的异同点,如整体框架有相同之处,但在关键帧选取、Gaussian增删策略等方面存在差异,还对比了相机追踪精度、重渲染精度和训练渲染FPS等性能。
最低0.47元/天 解锁文章
1830

被折叠的 条评论
为什么被折叠?



