【高等数学笔记】Stolz定理

Stolz定理是处理数列极限的一种工具,类似于微积分中的洛必达法则。它说明了两个数列比值的极限可以通过相邻两项差的比值的极限来求解,特别适用于处理∞/∞和0/0型的不定式。文章详细证明了定理,并给出了两个数列必须满足的条件以及两个示例,包括算术平均数的极限和斯特林公式的应用。

Stolz定理可以被理解为“数列的洛必达法则”,它揭示了两个数列之比的极限和相邻两项之差的比的极限的关系。

Stolz定理

∗ ∞ \cfrac{*}{\infty}

定理1 { a n } \{a_n\} { an} { b n } \{b_n\} { bn}是两个实数列,其中 { b n } \{b_n\} { bn}是严格单调的且趋向于无穷( + ∞ +\infty + − ∞ -\infty )。若极限 lim ⁡ n → ∞ a n + 1 − a n b n + 1 − b n = l \lim\limits_{n\to\infty}\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l nlimbn+1bnan+1an=l存在,则 lim ⁡ n → ∞ a n b n = l \lim\limits_{n\to\infty}\cfrac{a_n}{b_n}=l nlimbnan=l

证明: 不妨设 lim ⁡ n → ∞ b n = + ∞ \lim\limits_{n\to\infty}b_n=+\infty nlimbn=+,且 { b n } \{b_n\} { bn}严格单调递增。由 lim ⁡ n → ∞ a n + 1 − a n b n + 1 − b n = l \lim\limits_{n\to\infty}\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l nlimbn+1bnan+1an=l知, ∀ ε 2 > 0 \forall\cfrac{\varepsilon}{2}>0 2ε>0 ∃ N \exists N N,使得 ∀ n > N \forall n>N n>N,都有 ∣ a n + 1 − a n b n + 1 − b n − l ∣ < ε 2 \left|\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}-l\right|<\frac{\varepsilon}{2} bn+1bnan+1anl <2ε l − ε 2 < a n + 1 − a n b n + 1 − b n < l + ε 2 l-\cfrac{\varepsilon}{2}<\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}<l+\cfrac{\varepsilon}{2} l2ε<bn+1bnan+1an<l+2ε因为 { b n } \{b_n\} { bn}严格单调递增,所以 b n + 1 − b n > 0 b_{n+1}-b_n>0 bn+1bn>0。因此 ( l − ε 2 ) ( b n + 1 − b n ) < a n + 1 − a n < ( l + ε 2 ) ( b n + 1 − b n ) \left(l-\cfrac{\varepsilon}{2}\right)(b_{n+1}-b_n)<a_{n+1}-a_n<\left(l+\cfrac{\varepsilon}{2}\right)(b_{n+1}-b_n) (l2ε)(bn+1bn)<an+1an<(l+2ε)(bn+1bn)注意到 a n = ( a n − a n − 1 ) + ( a n − 1 + a n − 2 ) + ⋯ + ( a N + 2 − a N + 1 ) + a N + 1 a_n=(a_n-a_{n-1})+(a_{n-1}+a_{n-2})+\cdots+(a_{N+2}-a_{N+1})+a_{N+1} an=(anan1)+(an1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值