大模型算是当之无愧最火的一个方向了,算是新时代的风口。有小伙伴觉得,既然是新领域、新方向,那么,人才需求肯定比较大,相应的人才缺乏,竞争也会更少,那转行去做大模型是不是一个更好的选择呢?是不是更好就业呢?是不是就暂时能抵抗35岁中年危机呢?
在我的职场陪跑星球里,也有一位同学提出了类似问题,分享一下我的看法,希望给想要在大模型领域发展或者转行去做大模型的同学一些参考和建议。
问
星球提问
985 硕士毕业,大厂背景 工作 4~5 年 当下环境,对于换赛道为大模型这种(技术壁垒) 还是 深耕电商业务,争哥有什么建议么?
答
争哥回答
我们先来分析一下大模型这个领域。
实际上,大模型开发也分为两类,一类是算法工程师,另一个类是应用工程师。算法工程师就是研究大模型算法,应用工程师是基于大模型做一些上层应用的开发。当然,后面这类也需要对大模型有或多或少的了解,毕竟,你做普通业务开发还得了解MySQL、Kafka、Redis等底层实现一样。
对于第一类算法工程师,要求就高了,不是说你想转行去做,就能做得了的。竞争门槛极其高,起码得是个985/211硕士毕业吧,知名期刊发表过相关论文,有扎实的机器学习、人工智能的理论功底。
如果还要考虑要不要转行去做的,建议你早点放弃吧。因为真的适合去做的,根本就不需要犹豫。
对于第二类应用工程师,要求相对就低很多了。我们在「程序员职场生存指南」里详细讲到过,选择深耕的方向比较好的有两类,一类是有技术壁垒,一类是有业务壁垒。
像刚刚提到的大模型算法,算是有技术壁垒,而大模型应用就算是有业务壁垒的方向,他跟电商、物流、财务以及其他大型2B系统一样,业务较复杂。对于毕业五年以上的人,如果想要进入这些业务行业,就要比深耕这些行业多年的候选人,更没有优势,毕竟HR在筛选候选人的时候,还是倾向于选择业务匹配的候选人,特别是一些中高端的职位。
如果你现在的方向没有技术壁垒,也没有业务壁垒,那么,有业务壁垒的大模型方向,算是一个不错的选择。但是,不要总是看着别人碗里的饭香,别人的老婆更好,因为这种情况太常见了。今天的热门,也有可能会两三年后的天坑,就像当年的IOS、Android开发一样,没有那么多需求了。谁知道呢?
球友现在在大厂做电商开发,也算是有业务、有技术的方向,没必要换赛道去做大模型。自废武功,从新开始,这不是傻吗?除非自己对大模型情有独钟,那另当别论。
即便如此,也要看看这种热情是不是一瞬间的,因为很多东西都是因为不懂,有新鲜感,才觉得好。深入进去,未必有你想得好。建议可以先利用自己的业余时间研究研究,试试感觉,弄了半年,还觉得很不错,适合自己,并且自己有优势,再转也来得及。
你觉得呢?大模型会是未来的天坑吗?
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓