【AI大模型】使用LLama-Factory训练和微调LLama3

本网页主要介绍了如何使用 LLama-Factory 工具在 Paperspace 平台上训练和微调 LLama3 模型,并提供了详细的步骤和代码示例。

参考文献:
[1] https://blog.paperspace.com/fine-tune/


程序员为什么要学大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>好的,我现在需要回答用户关于微调训练多模态大模型使用什么工具的问题,特别是询问是否使用Llama-Factory。首先,我需要明确用户的问题核心:他们想知道哪些工具适用于多模态大模型微调,以及Llama-Factory是否是其中之一。 首先,我应该回顾一下多模态大模型的基本概念。多模态模型通常处理文本、图像、音频等多种数据类型,因此微调这样的模型需要工具支持不同的数据模态相应的处理流程。常见的例子包括CLIP、FLAVA、ALBEF等模型,这些模型在训练时需要同时处理图像文本。 接下来,我需要列举当前流行的微调工具。这里可能需要分几个方面来考虑:通用深度学习框架、专门针对大模型训练库、以及特定的工具或库如Hugging Face Transformers、DeepSpeed、ColossalAI等。此外,多模态可能需要特定的库,比如OpenAI的CLIP库、Hugging Face的Transformers中对多模态的支持,或者专门的库如MMPretrain(OpenMMLab的一部分)等。 然后,关于Llama-Factory,我需要确认它的具体功能适用范围。根据我的知识,Llama-Factory主要是针对LLaMA系列模型的微调工具,可能更专注于文本模态。虽然LLaMA本身是纯文本模型,但如果有扩展支持多模态的版本或相关项目,可能需要进一步调查。不过,通常情况下,Llama-Factory可能不支持多模态的微调,因为它的设计初衷是针对LLaMA模型,而LLaMA是单一模态的。因此,用户如果需要进行多模态微调,可能需要其他工具。 接下来,我需要考虑用户可能的实际需求。如果他们有一个多模态模型需要微调,比如结合图像文本的模型,他们可能需要使用支持多模态的框架。例如,Hugging Face的Transformers库现在支持一些多模态模型,如CLIP、ViT等,并且提供了相应的接口。此外,可能需要结合计算机视觉库如TorchVision或OpenCV来处理图像部分,使用NLP库处理文本部分,然后整合到训练流程中。 另外,分布式训练高效微调技术(如LoRA、QLoRA)对于大模型尤为重要。DeepSpeedColossalAI提供了分布式训练的支持,而PEFT(Parameter-Efficient Fine-Tuning)库则实现了多种参数高效微调方法。这些工具在多模态场景下是否适用?可能需要具体情况具体分析,但通常这些技术是模型无关的,可以应用于不同架构,包括多模态模型。 然后,我需要总结推荐的工具链。例如,使用Hugging Face的TransformersDatasets库来处理多模态数据加载模型加载,结合Accelerate或者DeepSpeed进行分布式训练使用PEFT实现参数高效微调。如果涉及到视觉部分,可能需要OpenMMLab的MMPretrain或其他视觉库。同时,自定义的数据预处理训练循环可能需要PyTorch或TensorFlow来实现。 最后,需要明确Llama-Factory是否适合。根据其文档功能,Llama-Factory主要针对LLaMA、BLOOM等纯文本模型的微调,可能不直接支持多模态任务。因此,用户如果需要处理多模态,可能需要选择其他工具,或者结合多个工具链来实现。 在回答时,需要结构清晰,分点列出常用工具,说明其适用场景,并指出Llama-Factory的定位,帮助用户理解其是否适合他们的需求。同时,提供实际的操作建议,比如如何组合不同工具来完成多模态微调任务,并推荐学习资源或文档链接,以便用户进一步探索。</think>微调多模态大模型时,工具的选择需综合考虑多模态数据处理、模型架构适配性及训练效率。以下是常用工具及适用场景的逐步分析: --- ### 一、多模态模型微调的常用工具 #### 1. **Hugging Face Transformers** - **功能**:支持文本、图像、音频等多模态模型(如CLIP、FLAVA)。 - **优势**: - 提供预训练模型接口(如`VisionTextDualEncoder`)。 - 集成数据集加载(`Datasets`库)训练流程(`Trainer`类)。 - **适用场景**:快速实现多模态模型的加载与微调。 #### 2. **OpenMMLab系列(如MMPretrain)** - **功能**:专注于视觉-语言多模态任务。 - **优势**: - 预置多模态模型(如ALBEF、BLIP)。 - 提供完整的数据预处理评估流程。 - **适用场景**:需处理图像-文本对的任务(如图文检索、视觉问答)。 #### 3. **DeepSpeed/ColossalAI** - **功能**:分布式训练加速。 - **优势**: - 支持ZeRO优化、混合精度训练- 显存优化,适合大模型训练- **适用场景**:大规模多模态模型的分布式微调。 #### 4. **PEFT(Parameter-Efficient Fine-Tuning)** - **功能**:参数高效微调(如LoRA、Adapter)。 - **优势**: - 减少显存占用,适配多模态模型结构。 - 可与Transformers库无缝集成。 - **适用场景**:资源受限时对多模态模型轻量化微调--- ### 二、Llama-Factory的定位与局限性 - **主要用途**:专注于**单模态文本模型**(如LLaMA、BLOOM)的微调- **局限性**: - 当前版本(截至2023年)**不支持多模态数据输入**(如图像、音频)。 - 未内置视觉/音频处理模块。 - **适用场景**:纯文本任务的模型微调(如对话生成、文本分类)。 --- ### 三、多模态微调的实践建议 1. **工具链组合示例**: - **数据处理**:Hugging Face `Datasets` + TorchVision/OpenCV。 - **模型加载**:Transformers库(CLIP)或 OpenMMLab。 - **高效训练**:DeepSpeed + PEFT(LoRA)。 - **实验管理**:MLflow/W&B记录多模态实验指标。 2. **代码片段示例(CLIP微调)**: ```python from transformers import CLIPModel, CLIPProcessor, Trainer # 加载多模态模型处理器 model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") # 自定义数据集(图像-文本对) dataset = load_your_dataset() # 需实现__getitem__返回{"images": PIL.Image, "texts": str} # 使用Trainer微调 trainer = Trainer( model=model, train_dataset=dataset, args=TrainingArguments(output_dir="./results"), ) trainer.train() ``` --- ### 四、学习资源推荐 1. **文档**: - [Hugging Face多模态教程](https://huggingface.co/docs/transformers/multimodal) - [OpenMMLab实战指南](https://github.com/open-mmlab/mmpretrain) 2. **论文**: - 《Learning Transferable Visual Models From Natural Language Supervision》(CLIP原论文)。 - 《BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation》。 --- ### 总结 若需微调**多模态大模型**,建议选择Hugging Face生态或OpenMMLab等专用工具;而**Llama-Factory更适用于纯文本模型**。实际项目中,常需组合多个工具实现端到端流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值