RAG 与 MCP 如何以不同方式解决大模型的局限性

ClaudeGPT-4o等大型语言模型 (LLM) 功能强大,但也面临两个主要限制:它们包含的知识是时效性的(更具体地说,是在训练时点固定的),并且决定它们一次可以处理多少信息的上下文窗口是有限的。

检索增强生成 (Retrieval-AugmentedGeneration, RAG) 和模型上下文协议 (Model Context Protocol, MCP) 是两种可以解决这些限制的方法。在本文中,我们将简短概述这两种方法的工作原理,以及区分它们的一些差异。

检索增强生成 (RAG)

RAG 是一种增强大型语言模型 (LLM) 的技术,它通过整合一个单独的检索系统,在模型生成响应之前从外部来源收集相关信息。RAG 的工作流程简单来说主要包括三个步骤:

  1. 查询处理:处理用户的查询,以识别关键信息需求。
  2. 检索:从外部数据库或知识库中获取相关的文档或信息片段。
  3. 增强生成:将检索到的文档添加到大型语言模型 (LLM) 的上下文窗口中,然后模型基于其预训练知识和收集到的信息生成响应。

这种方法弥合了静态的预训练知识与动态的信息检索系统之间的差距。

RAG 模型图RAG 模型图

RAG 的主要优势

  • 增强准确性:提供基于事实的、最新的信息
  • 减少幻觉:利用知识库中的信息
  • 可定制的知识:从特定领域来源获取知识
  • 透明度:通过来源提供引用想象一下一个大学聊天机器人,学生向它提问:
"高数期末考试是什么时候?"

如果使用 RAG 实现,系统将:

a) 处理这个查询

b) 从大学数据库中检索当前学期的考试时间表

c) 将此信息连同查询一起提供给大型语言模型 (LLM)

然后,大型语言模型 (LLM) 将生成包含最新信息的准确回复:

"高数期末考试安排在 12 月 15 日下午 2:00,地点在B教学楼"

RAG 允许系统访问最新的信息和专业知识,而无需重新训练模型。

模型上下文协议 (MCP)

模型上下文协议 (MCP) 使用不同的方法来扩展人工智能 (AI) 的能力。虽然 RAG 侧重于在生成之前进行检索,但 MCP 为大型语言模型 (LLM) 提供了一个标准化的接口,以便在生成过程请求额外信息或执行操作,这里和RAG是区别性比较多的,MCP大致就是大模型变生成变调用外部能力。MCP 的工作原理如下:

  1. 识别:模型识别出何时需要额外的信息或工具。
  2. 协议执行:按照预定义的协议,模型输出一个结构化的请求。
  3. 外部处理:外部系统处理此请求,以获取数据或执行操作。
  4. 持续生成:模型整合结果并继续生成响应。

MCP 模型图MCP 模型图

MCP 的主要优势

  • 上下文优化:最大限度地利用有限的上下文窗口
  • 结构化信息:使用模型更容易理解的模式和格式
  • 信息层级:优先考虑任务的关键信息
  • 一致性:为可预测的模型行为提供标准化的格式
  • 性能提升:在相同的上下文大小下实现更好的推理

当处理需要多个信息来源,但又必须在模型上下文窗口容量限制内运行的复杂任务时,MCP 尤其有价值。

使用通过 MCP 实现的大学聊天机器人场景,当学生询问 高数 考试时:

a) 模型识别出它需要当前的考试时间表

b) 它生成一个结构化的 MCP 调用:

{action: "fetch_exam_schedule", course: "高数", semester: "current"}

c) 外部系统处理此调用并返回考试详情

模型将此信息整合到响应中:"高数期末考试在 12 月 15 日下午 2:00,地点在 B教学楼"

结论

RAG 和 MCP 都是扩展人工智能 (AI) 能力的强大方法,它们都超越了模型最初训练时的局限性。RAG 通常更容易实现,并且非常适合直接的信息检索。MCP 为需要各种工具和数据源的复杂、多步骤任务提供了更大的灵活性。

在实践中,许多先进的AIGC系统开始结合这两种方法的元素——使用 RAG 进行广泛的知识访问,而使用 MCP 进行特定的工具使用和动态信息检索。 当我们开始开发大模型应用程序时,请考虑哪种方法,或两种方法的结合更适合我们的特定用例。

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

👉 福利来袭优快云大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭优快云大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值