37、时变密度下机器人集群覆盖问题的算法研究

时变密度下机器人集群覆盖问题的算法研究

1. 覆盖问题概述

在机器人集群的应用场景中,我们期望通过人类操作员提供的密度函数来影响机器人的分布,从而实现对特定区域的有效覆盖。这里,我们将研究区域 $D \subset R^2$ 视为机器人的工作空间,用户提供的密度函数 $\varphi : D \times [0, \infty) \to (0, \infty)$ 描述了区域内各点在不同时刻的相对重要性。

为了衡量机器人对区域的覆盖效果,我们引入了定位成本的概念。一般情况下,定位成本可以表示为:
[H(p, P, t) = \sum_{i=1}^{n} \int_{P_i} f(|q - p_i|) \varphi(q, t) dq]
考虑到大多数传感器性能随距离的平方衰减,我们采用以下定位成本公式:
[H(p, P, t) = \sum_{i=1}^{n} \int_{P_i} |q - p_i|^2 \varphi(q, t) dq]
当机器人的配置 $p$ 和区域划分 $P$ 使得上述成本函数最小化时,我们称该区域相对于密度函数 $\varphi$ 实现了最优覆盖。

通过引入 Voronoi 划分,我们可以将区域划分 $P$ 固定为 $V_i(p) = {q \in D | |q - p_i| \leq |q - p_j|, i \neq j}$,从而将定位成本简化为:
[H(p, t) = \sum_{i=1}^{n} \int_{V_i(p)} |q - p_i|^2 \varphi(q, t) dq]

2. 相关参数定义

为了进一步分析问题,我们定义了以下参数:
-

下载方式:https://pan.quark.cn/s/26794c3ef0f7 本文阐述了在Django框架中如何适当地展示HTML内容的方法。 在Web应用程序的开发过程中,常常需要向用户展示HTML格式的数据。 然而,在Django的模板系统中,为了防御跨站脚本攻击(XSS),系统会默认对HTML中的特殊字符进行转义处理。 这意味着,如果直接在模板代码中插入包含HTML标签的字符串,Django会自动将其转化为文本形式,而不是渲染为真正的HTML组件。 为了解决这个问题,首先必须熟悉Django模板引擎的安全特性。 Django为了防止不良用户借助HTML标签注入有害脚本,会自动对模板中输出的变量实施转义措施。 具体而言,模板引擎会将特殊符号(例如`<`、`>`、`&`等)转变为对应的HTML实体,因此,在浏览器中呈现的将是纯文本而非可执行的代码。 尽管如此,在某些特定情形下,我们确实需要在页面上呈现真实的HTML内容,这就需要借助特定的模板标签或过滤器来调控转义行为。 在提供的示例中,开发者期望输出的字符串`<h1>helloworld</h1>`能被正确地作为HTML元素展示在页面上,而不是被转义为文本`<h1>helloworld</h1>`。 为实现这一目标,作者提出了两种解决方案:1. 应用Django的`safe`过滤器。 当确认输出的内容是安全的且不会引发XSS攻击时,可以在模板中这样使用变量:```django<p>{{ data|safe }}</p>```通过这种方式,Django将不会对`data`变量的值进行HTML转义,而是直接将其当作HTML输出。 2. 使用`autoescape`标签。 在模板中,可以通过`autoesc...
已经博主授权,源码转载自 https://pan.quark.cn/s/1d1f47134a16 Numerical Linear Algebra Visual Studio C++实现数值线性代数经典算法。 参考教材:《数值线性代数(第2版)》——徐树方、高立、张平文 【代码结构】 程序包含两个主要文件 和 。 中实现矩阵类(支持各种基本运算、矩阵转置、LU 分解、 Cholesky 分解、QR分解、上Hessenberg化、双重步位移QR迭代、二对角化),基本方程组求解方法(上三角、下三角、Guass、全主元Guass、列主元Guass、Cholesky、Cholesky改进),范数计算方法(1范数、无穷范数),方程组古典迭代解法(Jacobi、G-S、JOR),实用共轭梯度法,幂法求模最大根,隐式QR算法,过关Jacobi法,二分法求第K大特征值,反幂法,SVD迭代。 中构建矩阵并求解。 【线性方程组直接解法】 不选主元、全主元、列主元三种Guass消去法,Cholesky分解及其改进版。 【report】 【方程组解误差分析】 矩阵范数计算、方程求解误差分析。 【report】 【最小二乘】 QR分解算法求解线性方程组、最小二乘问题。 【report】 【线性方程组古典迭代解法】 Jacobi迭代法、G-S迭代法、SOR迭代法求解方程组。 【report】 【共轭梯度法】 实用共轭梯度法。 【report】 【非对称特征值】 幂法求模特征根、QR方法(上Hessenberg分解、双重步位移QR迭代、隐式QR法) 【report】 【对称特征值】 过关Jacobi法、二分法、反幂法。 【report】 【对称特征值】 矩阵二对角化、SVD迭代。 【report】
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值