计算机中的数制与算术运算详解
1. 十六进制表示法
在计算机领域,由于数字计算机组件固有的二进制特性,计算机内的所有数据形式都由各种二进制代码表示。然而,二进制系统虽对计算机便利,但对人类而言极为繁琐。因此,许多计算机专业人员更倾向使用更紧凑的表示法。
十进制表示法虽比二进制更紧凑,但在二进制(基数 2)和十进制(基数 10)之间转换时很麻烦。所以,十六进制表示法被广泛采用。在十六进制中,二进制数字被分成四位一组,称为半字节(nibble)。每一种可能的四位二进制数字组合都被赋予一个符号,如下所示:
| 二进制 | 十六进制 |
| ---- | ---- |
| 0000 | 0 |
| 0001 | 1 |
| 0010 | 2 |
| 0011 | 3 |
| 0100 | 4 |
| 0101 | 5 |
| 0110 | 6 |
| 0111 | 7 |
| 1000 | 8 |
| 1001 | 9 |
| 1010 | A |
| 1011 | B |
| 1100 | C |
| 1101 | D |
| 1110 | E |
| 1111 | F |
由于使用了 16 个符号,这种表示法被称为十六进制,这 16 个符号就是十六进制数字。一个十六进制数字序列可以被看作是表示一个基数为 16 的整数。例如:
[2C_{16} = (2_{16} * 16^1) + (C_{16} * 16^0) = (2_{10} * 16^1) + (12_{10} * 16^0) = 44]
超级会员免费看
订阅专栏 解锁全文
2308

被折叠的 条评论
为什么被折叠?



