记录一个菜逼的成长。。
题目链接
用java,普通的高精度也能过。
但这里记下用FFT的方法
学习资料里解释的很好。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const double PI = acos(-1);
const int INF = 0x3f3f3f3f;
struct complex
{
double r,i;
complex(double _r = 0.0,double _i = 0.0)
{
r = _r; i = _i;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
///雷德算法--倒位序
void Rader(complex F[],int len)
{
for( int i = 1,j = len >> 1; i < len-1; i++ ){
if(i < j)swap(F[i],F[j]);
int k = len >> 1;
while(j >= k){
j -= k;
k >>= 1;
}
if(j < k)j += k;
}
}
/**
* 做FFT
* len必须为2^k形式,
* on==1时是DFT,on==-1时是IDFT
**/
void fft(complex F[],int len,int dft)
{
Rader(F,len);
for( int h = 2; h <= len; h <<= 1 ){
complex wn(cos(-dft*2*PI/h),sin(-dft*2*PI/h));
for( int j = 0; j < len; j += h ){
complex w(1,0);
for( int k = j; k < j + (h >> 1); k++ ){
complex u = F[k];
complex t = w*F[k+(h>>1)];
F[k] = u + t;
F[k+(h>>1)] = u - t;
w = w * wn;
}
}
}
if(dft == -1)
for( int i = 0; i < len; i++ )
F[i].r /= len;
}
void Conv(complex a[],complex b[],int len)
{
fft(a,len,1);
fft(b,len,1);
for( int i = 0; i < len; i++ )
a[i] = a[i] * b[i];
fft(a,len,-1);
}
const int maxn = 200000 + 10;
char str1[maxn],str2[maxn];
int sum[maxn];
complex a[maxn],b[maxn];
int main()
{
while(~scanf("%s%s",str1,str2)){
int len1 = strlen(str1);
int len2 = strlen(str2);
int len = 1;
while(len < len1*2 || len < len2*2)len <<= 1;
for( int i = 0; i < len1; i++ ){
a[i] = complex(str1[len1-i-1]-'0',0);
}
for( int i = len1; i < len; i++ ){
a[i] = complex(0,0);
}
for( int i = 0; i < len2; i++ ){
b[i] = complex(str2[len2-i-1]-'0',0);
}
for( int i = len2; i < len; i++ ){
b[i] = complex(0,0);
}
Conv(a,b,len);
///处理精度
for( int i = 0; i < len; i++ )
sum[i] = (int)(a[i].r + 0.5);
///处理进位
for( int i = 0; i < len; i++ ){
sum[i+1] += sum[i] / 10;
sum[i] %= 10;
}
len = len1 + len2;
while(len > 0 && sum[len] <= 0)len--;
for( ;len >= 0; len-- )
printf("%d",sum[len]);
puts("");
}
return 0;
}