理解numpy中的切片访问

一维数组的切片访问

numpy 中的一维数组的切片方法与 python 内置的list 切片类似.

Details:

    1. ndarray[start:stop:step]     # means start from start, stop at stop, step by step
    2. ndarray[start:stop]          # means start from start, stop at stop, step by 1
    3. ndarray[start:]              # means start from start, stop at the end, step by 1
    4. ndarray[:stop]               # means start from the beginning, stop at stop, step by 1
    5. ndarray[:]                   # means start from the beginning, stop at the end, step by 1                   
    6. ndarray[start:stop:step, start:stop:step]                  # means 2-dimensional slicing

    Note:
    start is from 0
    start is inclusive, stop is exclusive
    step could be negative, which means reverse order

下面是例子
先构建1个1维数组:

    arr = np.arange(10) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    logger.info(f"arr: {
     arr}") # [0 1 2 3 4 5 6 7 8 9]
  1. 如果stop index > 数组长度, 则只会返回 start: last index + 1
logger.info(f"arr[1:100]: {
     arr[1:100]}") # [1 2 3 4 5 6 7 8 9] even stop > len(arr)
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nvd11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值