8、网页链接与导航全解析

网页链接与导航全解析

1. 网站目录与结构

在构建网站时,合理的目录结构至关重要。目录其实就是网站上的文件夹,如同硬盘里包含不同文件夹一样,网站也由多个目录组成,每个目录存放网站的不同部分。例如,大型网站的各个子板块会有独立的目录,不同类型的文件也会存放在不同目录,像图片可能存于一个目录,样式表存于另一个目录。

如果把网站所有文件都放在同一个目录,该目录会迅速变得庞大复杂,不利于管理和查找文件。所以,我们要像整理硬盘文件一样,将网站文件合理组织到各个目录中。

1.1 目录结构术语

  • 根目录 :是存放整个网站的主目录,例如“exampleNewsSite.com”。
  • 子目录 :位于其他目录内部的目录,如“Film”是“Entertainment”的子目录。
  • 父目录 :包含其他目录的目录,“Entertainment”就是“Arts”“Film”“Music”和“TV”的父目录。

以下是一个新闻网站目录结构示例:

graph LR
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px

    A(exampleNewsSite.com):::process --> B(Entertainment):::process
    A --> C(images):::process
   
【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)内容概要:本文研究了一种基于机器学习(ML)和离散小波变换(DWT)的电能质量扰动分类方法,并提供了Matlab实现方案。首先利用DWT对电能质量信号进行多尺度分解,提取信号的时频域特征,有效捕捉电压暂降、暂升、中断、谐波、闪变等常见扰动的关键信息;随后结合机器学习分类器(如SVM、BP神经网络等)对提取的特征进行训练分类,实现对不同类型扰动的自动识别准确区分。该方法充分发挥DWT在信号去噪特征提取方面的优势,结合ML强大的模式识别能力,提升了分类精度鲁棒性,具有较强的实用价值。; 适合人群:电气工程、自动化、电力系统及其自动化等相关专业的研究生、科研人员及从事电能质量监测分析的工程技术人员;具备一定的信号处理基础和Matlab编程能力者更佳。; 使用场景及目标:①应用于智能电网中的电能质量在线监测系统,实现扰动类型的自动识别;②作为高校或科研机构在信号处理、模式识别、电力系统分析等课程的教学案例或科研实验平台;③目标是提高电能质量扰动分类的准确性效率,为后续的电能治理设备保护提供决策依据。; 阅读建议:建议读者结合Matlab代码深入理解DWT的实现过程特征提取步骤,重点关注小波基选择、分解层数设定及特征向量构造对分类性能的影响,并尝试对比不同机器学习模型的分类效果,以面掌握该方法的核心技术要点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值