Codeforces Round #433 (Div. 2, C. Planning (贪心+简单实现)

本文介绍了一个航班调度问题的解决方法,通过优先队列实现最小化因延误造成的成本损失。问题设定为在特定条件下重新安排n个航班的起飞时间,以减少总体延误成本。

C. Planning
time limit per test
1 second
memory limit per test
512 megabytes
input
standard input
output
standard output

Helen works in Metropolis airport. She is responsible for creating a departure schedule. There are n flights that must depart today, the i-th of them is planned to depart at the i-th minute of the day.

Metropolis airport is the main transport hub of Metropolia, so it is difficult to keep the schedule intact. This is exactly the case today: because of technical issues, no flights were able to depart during the first k minutes of the day, so now the new departure schedule must be created.

All n scheduled flights must now depart at different minutes between (k + 1)-th and (k + n)-th, inclusive. However, it’s not mandatory for the flights to depart in the same order they were initially scheduled to do so — their order in the new schedule can be different. There is only one restriction: no flight is allowed to depart earlier than it was supposed to depart in the initial schedule.

Helen knows that each minute of delay of the i-th flight costs airport ci burles. Help her find the order for flights to depart in the new schedule that minimizes the total cost for the airport.
Input

The first line contains two integers n and k (1 ≤ k ≤ n ≤ 300 000), here n is the number of flights, and k is the number of minutes in the beginning of the day that the flights did not depart.

The second line contains n integers c1, c2, …, cn (1 ≤ ci ≤ 107), here ci is the cost of delaying the i-th flight for one minute.
Output

The first line must contain the minimum possible total cost of delaying the flights.

The second line must contain n different integers t1, t2, …, tn (k + 1 ≤ ti ≤ k + n), here ti is the minute when the i-th flight must depart. If there are several optimal schedules, print any of them.
Example
input

5 2
4 2 1 10 2

output

20
3 6 7 4 5

Note

Let us consider sample test. If Helen just moves all flights 2 minutes later preserving the order, the total cost of delaying the flights would be (3 - 1)·4 + (4 - 2)·2 + (5 - 3)·1 + (6 - 4)·10 + (7 - 5)·2 = 38 burles.

However, the better schedule is shown in the sample answer, its cost is (3 - 1)·4 + (6 - 2)·2 + (7 - 3)·1 + (4 - 4)·10 + (5 - 5)·2 = 20 burles.

题意:

给你n个飞机,k。按出发顺序1-n给你每个飞机拖延1分钟所要给的分数。让你重新排列飞机的飞行表。

前1-k分钟不能起飞。求一个出发顺序,让总分数最少。


原本打算用set的,结果错了。。
看了别人是这样的,非常好。。


int ans[N];
priority_queue<pii>q;
int c[N];
int main(){
    int n,k;sf("%d%d",&n,&k);
    rep(i,1,n){ sf("%d",&c[i]); }
    int tp=1;
    LL tot=0;
    for(int t=k+1;t<=k+n;++t){
        while(tp<=t&&tp<=n){
            q.push(MP(c[tp],tp));
            ++tp;
        }
        pii x=q.top();q.pop();
        ans[x.second]=t;
        tot+=1LL*x.first*(1LL*t-x.second);
    }
    cout<<tot<<'\n';
    rep(i,1,n){
        pf("%d%c",ans[i],i==n?'\n':' ');
    }
}
【电动车优化调度】基于模型预测控制(MPC)的凸优化算法的电动车优化调度(Matlab代码实现)内容概要:本文介绍了基于模型预测控制(MPC)的凸优化算法在电动车优化调度中的应用,并提供了Matlab代码实现。该方法结合了MPC的滚动优化特性与凸优化的高效求解能力,用于解决电动车充电调度问题,提升电网运行效率与可再生能源消纳能力。文中还提及多个相关研究方向和技术支撑,包括智能优化算法、机器学习、电力系统管理等,展示了其在多领域交叉应用的潜力。配套资源可通过提供的网盘链接获取,涵盖YALMIP工具包及其他完整仿真资源。; 适合人群:具备一定电力系统、优化理论及Matlab编程基础的科研人员和研究生,尤其适合从事电动汽车调度、智能电网优化等相关课题的研究者。; 使用场景及目标:①实现电动车集群在分时电价或电网需求响应机制下的有序充电调度;②结合可再生能源出力与负荷预测,利用MPC进行多时段滚动优化,降低电网峰谷差,提高能源利用效率;③为学术论文复现、课题研究及工程仿真提供可靠的技术路线与代码支持。; 阅读建议:建议读者结合文档中提到的智能优化算法与电力系统背景知识进行系统学习,优先掌握MPC基本原理与凸优化建模方法,并下载配套资源调试代码,以加深对电动车调度模型构建与求解过程的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值