机器学习在工业应用及Julia深度学习实现
1. 机器学习在工业应用中的性别与年龄检测
1.1 数据处理
首先,将训练图像和测试图像转换为NumPy数组,并打印其形状:
train_images = np.asarray(train_images)
test_images = np.asarray(test_images)
print("Train images shape {}".format(train_images.shape))
print("Test images shape {}".format(test_images.shape))
1.2 方向模型构建
构建一个方向模型,使用卷积层、池化层、归一化层和全连接层:
model = Sequential()
model.add(Conv2D(input_shape=(227, 227, 3), filters=95, kernel_size=(7, 7),
strides=4, padding="valid", activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Conv2D(filters=256, kernel_size=(5, 5), strides=1, padding="same", activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Conv2D(filters=256, kernel_size=(3, 3), strides=1, padding="same", activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Flatten())
model.add(Dense(units=512, activation="relu"))
model.add(Dropout(rate=0.25))
model.add(Dense(units=512, activation='relu'))
model.add(Dropout(rate=0.25))
model.add(Dense(units=2, activation="softmax"))
model.summary()
1.3 模型训练
使用早停回调机制训练模型,并保存模型:
callback = tf.keras.callbacks.EarlyStopping(monitor="loss", patience=3)
model.compile(optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
history = model.fit(train_images, y_train, batch_size=32, epochs=25, validation_data=(test_images, y_test),
callbacks=[callback])
print("++++++++++++++++++++++++++++++++++++++++++++++")
model.save("gender_model25.h5")
test_loss, test_acc = model.evaluate(test_images, y_test, verbose=2)
print(test_acc)
1.4 年龄信息的训练与测试集划分
对年龄信息进行训练集和测试集的划分:
x = clean_data[["Log_path"]]
y = clean_data[["age"]]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
print("Train data shape {}".format(X_train.shape))
print("Test data shape {}".format(X_test.shape))
train_images = []
test_images = []
for row in X_train.iterrows():
image = Image.open(row[1].img_path)
image = image.resize((227, 227))
data = np.asarray(image)
train_images.append(data)
for row in X_test.iterrows():
image = Image.open(row[1].img_path)
image = image.resize((227, 227))
data = np.asarray(image)
test_images.append(data)
train_images = np.asarray(train_images)
test_images = np.asarray(test_images)
print("Train images shape {}".format(train_images.shape))
print("Test images shape {}".format(test_images.shape))
1.5 年龄模型构建与训练
构建年龄模型并进行训练:
model = Sequential()
model.add(Conv2D(input_shape=(227, 227, 3), filters=6, kernel_size=(7, 7),
strides=4, padding="valid", activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Conv2D(filters=250, kernel_size=(3, 5), strides=1, padding="same", activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Conv2D(filters=256, kernel_size=(3, 3), strides=1, padding="same", activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Flatten())
model.add(Dense(units=512, activation="relu"))
model.add(Dropout(rate=0.25))
model.add(Dense(units=512, activation="relu"))
model.add(Dropout(rate=0.25))
model.add(Dense(units=8, activation="softmax"))
model.summary()
callback = tf.keras.callbacks.EarlyStopping(monitor="loss", patience=3)
model.compile(optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
history = model.fit(train_images, y_train, batch_size=32, epochs=50, validation_data=(test_images, y_test),
callbacks=[callback])
model.save("age_model50.h5")
test_loss, test_acc = model.evaluate(test_images, y_test, verbose=2)
print(test_acc)
1.6 模型推理
加载预训练模型进行性别和年龄检测:
import keras
import json
import sys
import tensorflow as tf
from keras.layers import Input
import numpy as np
import argparse
from wide_resnet import WideResNet
from keras.utils.data_utils import get_file
import face_recognition
gender_model = tf.keras.models.load_model('weights.hdf5')
gender_model.summary()
age_map = [['0-2'], ['4-6'], ['8-13'], ['15-20'], ['25-32'], ['38-43'], ['48-63'], ['60+']]
def detect_face(self):
cap = cv2.VideoCapture(0)
while True:
grb, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if not grb:
break
face_locations = face_recognition.face_locations(frame)
print(face_locations)
if face_locations == []:
cv2.imshow("Gender and age", frame)
if cv2.waitKey(1) == 27:
break
else:
cv2.rectangle(frame, (face_locations[0][3], face_locations[0][0]),
(face_locations[0][1], face_locations[0][2]), (255, 200, 0), 2)
img = frame[face_locations[0][0] - 25: face_locations[0][2] - 25,
face_locations[0][3] - 25: face_locations[0][1] + 25]
img2 = cv2.resize(img, (64, 64))
img2 = np.array([img2]).reshape((1, 64, 64, 3))
results = self.model.predict(img2)
predicted_genders = results[0]
gen = "F" if predicted_genders[0][0] > 0.5 else "M"
ages = np.arange(0, 101).reshape(101, 1)
predicted_ages = results[1].dot(ages).flatten()
pred = ""
pred = str(int(predicted_ages[0])) + " " + str(gen)
print(pred)
cv2.putText(frame, pred, (face_locations[0][3], face_locations[0][0]),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (2, 255, 255), 2)
cv2.imshow("Gender and age", frame)
cap.release()
if cv2.waitKey(1) == 27:
cv2.destroyAllWindows()
1.7 流程总结
下面是性别与年龄检测的流程图:
graph LR
A[数据处理] --> B[方向模型构建]
B --> C[模型训练]
C --> D[年龄信息划分]
D --> E[年龄模型构建与训练]
E --> F[模型推理]
2. 使用Julia进行高级深度学习
2.1 卷积神经网络(CNN)
使用Flux库构建CNN模型:
using Flux
using Flux: @epochs, onehotbatch, onecold, throttle
using Statistics
using Base.Iterators: repeated
function build_model()
return Chain(
Conv((3, 3), 1 => 16, relu),
MaxPool((2, 2)),
Conv((3, 3), 16 => 32, relu),
MaxPool((2, 2)),
Conv((3, 3), 32 => 64, relu),
MaxPool((2, 2)),
flatten,
Dense(64 * 4 * 4, 128, relu),
Dense(128, 10),
softmax
)
end
using Flux.Data.MNIST
imgs = MNIST.images()
labels = MNIST.labels()
X = hcat(float.(reshape.(imgs, :))...) |> gpu
Y = onehotbatch(labels, 0:9) |> gpu
train_indices = 1:50000
test_indices = 50001:60000
train_data = (X[:, train_indices], Y[:, train_indices])
test_data = (X[:, test_indices], Y[:, test_indices])
model = build_model() |> gpu
loss(x, y) = Flux.crossentropy(model(x), y)
optimizer = Flux.ADAM(params(model))
epochs = 10
@epochs epochs Flux.train!(loss, train_data, optimizer, cb = throttle(() -> println("Loss: ", loss(X, Y)), 10))
accuracy(x, y) = mean(onecold(model(x)) .== onecold(y))
acc = accuracy(test_data...)
println("Test accuracy: $acc")
2.2 深度神经网络(DNN)
构建DNN模型:
using Flux
using Flux: @epochs, onecold, onehotbatch
using Statistics
function build_model()
return Chain(
Dense(784, 128, relu),
Dense(128, 64, relu),
Dense(64, 10),
softmax
)
end
using Flux.Data.MNIST
imgs = MNIST.images()
labels = MNIST.labels()
X = hcat(float.(reshape.(imgs, :))...)
Y = onehotbatch(labels, 0:9)
train_indices = 1:50000
test_indices = 50001:60000
train_data = (X[:, train_indices], Y[:, train_indices])
test_data = (X[:, test_indices], Y[:, test_indices])
model = build_model()
loss(x, y) = Flux.crossentropy(model(x), y)
optimizer = Flux.ADAM(params(model))
epochs = 10
@epochs epochs Flux.train!(loss, train_data, optimizer)
accuracy(x, y) = mean(onecold(model(x)) .== onecold(y))
acc = accuracy(test_data...)
println("Test accuracy: $acc")
2.3 循环神经网络(RNN)
构建RNN模型:
using Flux
using Flux: onehot, onehotbatch, crossentropy, throttle
using Statistics
function build_model(vocab_size::Int, hidden_size::Int)
return Chain(
LSTM(vocab_size, hidden_size),
Dense(hidden_size, vocab_size),
softmax
)
end
function generate_text(corpus::String, seq_length::Int)
data = collect(corpus)
X = []
Y = []
for i in 1:length(data) - seq_length
push!(X, data[i:i + seq_length - 1])
push!(Y, data[i + seq_length])
end
return X, Y
end
corpus = "This is an example text used for training RNN model."
vocab = unique(collect(corpus))
vocab_size = length(vocab)
char_to_index = Dict(vocab[i] => i for i in 1:vocab_size)
index_to_char = Dict(i => vocab[i] for i in 1:vocab_size)
seq_length = 10
X, Y = generate_text(corpus, seq_length)
X = hcat(onehotbatch(X, vocab_size)...)
Y = onehotbatch(Y, vocab_size)
train_indices = 1:floor(Int, 0.8 * length(X))
test_indices = length(train_indices) + 1:length(X)
train_data = (X[:, train_indices], Y[:, train_indices])
test_data = (X[:, test_indices], Y[:, test_indices])
hidden_size = 128
model = build_model(vocab_size, hidden_size)
loss(x, y) = crossentropy(model(x), y)
optimizer = ADAM(params(model), 0.01)
epochs = 10
@epochs epochs Flux.train!(loss, train_data, optimizer, cb = throttle(() -> println("Loss: ", loss(X, Y)), 2))
function generate_text(model, seed::String, length::Int)
current_char = seed[end]
result = seed
for i in 1:length
input = onehot(vocab_size, char_to_index[current_char])
output = model(input)
idx = argmax(output)
current_char = index_to_char[idx]
result *= current_char
end
return result
end
seed = "This is"
generated_text = generate_text(model, seed, 100)
println("Generated text:")
println(generated_text)
2.4 长短期记忆网络(LSTM)
构建LSTM模型,代码与RNN类似:
# 代码与RNN部分基本相同,只需将RNN的LSTM层替换为LSTM即可
2.5 生成对抗网络(GAN)
构建GAN模型:
using Random
using Flux
using Flux: @epochs, mse, throttle
using Statistics
function build_generator(noise_size::Int, output_size::Int)
return Chain(
Dense(noise_size, 128, relu),
Dense(128, output_size, σ)
)
end
function build_discriminator(input_size::Int)
return Chain(
Dense(input_size, 128, relu),
Dense(128, 1, σ)
)
end
function generate_noise(batch_size::Int, noise_size::Int)
return randn(batch_size, noise_size)
end
function train_gan(generator, discriminator, noise_size::Int, batch_size::Int, data_loader, epochs::Int)
loss_fn = mse
opt_gen = ADAM(params(generator), 0.001)
opt_disc = ADAM(params(discriminator), 0.001)
for epoch in 1:epochs
for real_data_batch in data_loader
noise = generate_noise(batch_size, noise_size)
fake_data_batch = generator(noise)
discriminator_loss = loss_fn(discriminator(real_data_batch), ones(batch_size)) +
loss_fn(discriminator(fake_data_batch), zeros(batch_size))
Flux.back!(discriminator_loss)
Flux.update!(opt_disc)
noise = generate_noise(batch_size, noise_size)
fake_data_batch = generator(noise)
generator_loss = loss_fn(discriminator(fake_data_batch), ones(batch_size))
Flux.back!(generator_loss)
Flux.update!(opt_gen)
end
println("Epoch $epoch completed")
end
end
noise_size = 100
data_size = 1000
batch_size = 64
epochs = 10
fake_data = rand(data_size, noise_size)
generator = build_generator(noise_size, data_size)
discriminator = build_discriminator(data_size)
train_gan(generator, discriminator, noise_size, batch_size, fake_data, epochs)
2.6 门控循环单元(GRU)
构建GRU模型:
# 代码与RNN部分基本相同,只需将RNN的LSTM层替换为GRU即可
2.7 径向基函数网络(RBFN)
构建RBFN模型:
using LinearAlgebra
function radial_basis_function(x, c, σ)
return exp(-norm(x - c)^2 / (2 * σ^2))
end
struct RBFN
centers::Matrix{Float64}
weights::Vector{Float64}
σ::Float64
end
function RBFN(centers::Matrix{Float64}, σ::Float64)
return RBFN(centers, zeros(size(centers, 2)), σ)
end
function train_rbfn!(rbfn::RBFN, X::Matrix{Float64}, Y::Vector{Float64})
Φ = [radial_basis_function(X[:, i], rbfn.centers[:, j], rbfn.σ) for i in 1:size(X, 2), j in 1:size(rbfn.centers, 2)]
rbfn.weights = Φ \ Y
end
function predict(rbfn::RBFN, x::Vector{Float64})
Φ = [radial_basis_function(x, rbfn.centers[:, j], rbfn.σ) for j in 1:size(rbfn.centers, 2)]
return sum(rbfn.weights .* Φ)
end
X = randn(2, 100)
Y = sin.(sum(X, dims=1))
num_centers = 10
σ = 0.1
centers = randn(2, num_centers)
rbfn = RBFN(centers, σ)
train_rbfn!(rbfn, X, Y)
x_test = [0.5, 0.5]
prediction = predict(rbfn, x_test)
println("Prediction for $x_test: $prediction")
2.8 多层感知器(MLP)
构建MLP模型:
using Flux
using Flux: onehotbatch, onecold, crossentropy, throttle
using Statistics
function build_model(input_size::Int, hidden_sizes::Vector{Int}, output_size::Int)
layers = []
push!(layers, Dense(input_size, hidden_sizes[1], relu))
for i in 2:length(hidden_sizes)
push!(layers, Dense(hidden_sizes[i - 1], hidden_sizes[i], relu))
end
push!(layers, Dense(hidden_sizes[end], output_size))
return Chain(layers...)
end
using Flux.Data.MNIST
imgs = MNIST.images()
labels = MNIST.labels()
X = hcat(float.(reshape.(imgs, :))...)
Y = onehotbatch(labels, 0:9)
train_indices = 1:50000
test_indices = 50001:60000
train_data = (X[:, train_indices], Y[:, train_indices])
test_data = (X[:, test_indices], Y[:, test_indices])
input_size = size(X, 1)
hidden_sizes = [64, 32]
output_size = size(Y, 1)
model = build_model(input_size, hidden_sizes, output_size)
loss(x, y) = crossentropy(model(x), y)
optimizer = ADAM(params(model), 0.01)
epochs = 10
@epochs epochs Flux.train!(loss, train_data, optimizer, cb = throttle(() -> println("Loss: ", loss(X, Y)), 5))
accuracy(x, y) = mean(onecold(model(x)) .== onecold(y))
acc = accuracy(test_data...)
println("Test accuracy: $acc")
2.9 自组织映射(SOM)
构建SOM模型:
using Random
struct SOM
grid::Matrix{Vector{Float64}}
input_size::Int
grid_size::Tuple{Int, Int}
learning_rate::Float64
end
function initialize_som(input_size::Int, grid_size::Tuple{Int, Int})
grid = [rand(input_size) for _ in 1:grid_size[1] * grid_size[2]]
return SOM(grid, input_size, grid_size, 0.1)
end
function find_bmu(som::SOM, input::Vector{Float64})
bmu_index = argmin([norm(input - som.grid[i]) for i in 1:length(som.grid)])
return bmu_index, som.grid[bmu_index]
end
function update_som!(som::SOM, input::Vector{Float64}, bmu_index::Int, iteration::Int, max_iterations::Int)
radius = max(som.grid_size...) * exp(-iteration / max_iterations)
for i in 1:length(som.grid)
distance = abs(i - bmu_index)
if distance <= radius
influence = exp(-(distance^2) / (2 * radius^2))
som.grid[i] += som.learning_rate * influence * (input - som.grid[i])
end
end
end
function train_som!(som::SOM, inputs::Matrix{Float64}, max_iterations::Int)
for iteration in 1:max_iterations
for input in eachcol(inputs)
bmu_index, bmu = find_bmu(som, input)
update_som!(som, input, bmu_index, iteration, max_iterations)
end
end
end
2.10 流程总结
下面是Julia深度学习模型构建与训练的流程图:
graph LR
A[数据加载与预处理] --> B[模型构建]
B --> C[损失函数与优化器定义]
C --> D[模型训练]
D --> E[模型测试]
综上所述,本文介绍了机器学习在工业应用中的性别与年龄检测,以及使用Julia进行多种深度学习模型的构建与训练。通过这些示例代码,我们可以看到不同类型的深度学习模型在不同任务中的应用。
3. 不同模型的特点与应用场景对比
3.1 模型特点对比
| 模型类型 | 特点 |
|---|---|
| 卷积神经网络(CNN) | 适合处理具有网格结构的数据,如图像。通过卷积层自动提取特征,减少参数数量,具有平移不变性。 |
| 深度神经网络(DNN) | 由多个全连接层组成,结构简单,可用于处理各种类型的数据,但参数数量较多,容易过拟合。 |
| 循环神经网络(RNN) | 能够处理序列数据,通过隐藏状态传递信息,但存在梯度消失或梯度爆炸问题。 |
| 长短期记忆网络(LSTM) | 是RNN的改进,通过门控机制解决了梯度消失问题,更适合处理长序列数据。 |
| 生成对抗网络(GAN) | 由生成器和判别器组成,用于生成新的数据,如图像、文本等。 |
| 门控循环单元(GRU) | 也是RNN的改进,结构比LSTM简单,训练速度更快。 |
| 径向基函数网络(RBFN) | 以径向基函数为激活函数,具有局部逼近能力,可用于函数逼近和分类问题。 |
| 多层感知器(MLP) | 是最基本的神经网络,由输入层、隐藏层和输出层组成,可用于各种分类和回归问题。 |
| 自组织映射(SOM) | 用于无监督学习,将高维数据映射到低维网格上,保留数据的拓扑结构。 |
3.2 应用场景对比
| 模型类型 | 应用场景 |
|---|---|
| 卷积神经网络(CNN) | 图像分类、目标检测、语义分割等。 |
| 深度神经网络(DNN) | 语音识别、自然语言处理中的文本分类、回归分析等。 |
| 循环神经网络(RNN) | 语言模型、机器翻译、时间序列预测等。 |
| 长短期记忆网络(LSTM) | 股票价格预测、情感分析、语音识别等。 |
| 生成对抗网络(GAN) | 图像生成、数据增强、风格迁移等。 |
| 门控循环单元(GRU) | 与LSTM类似,但在一些对训练速度要求较高的场景中更有优势。 |
| 径向基函数网络(RBFN) | 函数逼近、模式识别、故障诊断等。 |
| 多层感知器(MLP) | 手写数字识别、信用风险评估、医疗诊断等。 |
| 自组织映射(SOM) | 数据可视化、聚类分析、异常检测等。 |
4. 模型选择与优化建议
4.1 模型选择
在选择合适的深度学习模型时,需要考虑以下因素:
1.
数据类型
:如果是图像数据,CNN是较好的选择;如果是序列数据,RNN、LSTM或GRU更合适;如果是无监督学习任务,SOM可能是一个不错的选择。
2.
任务类型
:分类任务可以选择CNN、DNN、MLP等;回归任务可以选择DNN、RBFN等;生成任务可以选择GAN。
3.
数据规模
:数据规模较小时,简单的模型如MLP可能更合适;数据规模较大时,可以选择复杂的模型如CNN、LSTM。
4.
计算资源
:一些复杂的模型(如GAN)需要大量的计算资源和时间进行训练,如果计算资源有限,可以选择相对简单的模型。
4.2 模型优化
以下是一些常见的模型优化方法:
1.
数据增强
:对于图像数据,可以进行旋转、翻转、缩放等操作;对于文本数据,可以进行同义词替换、插入、删除等操作,以增加数据的多样性。
2.
正则化
:如L1和L2正则化、Dropout等,可防止模型过拟合。
3.
调整超参数
:如学习率、批量大小、训练轮数等,通过网格搜索、随机搜索等方法找到最优的超参数组合。
4.
模型融合
:将多个不同的模型进行融合,如投票法、平均法等,以提高模型的性能。
5. 总结与展望
5.1 总结
本文详细介绍了机器学习在工业应用中的性别与年龄检测,以及使用Julia进行多种深度学习模型的构建与训练。通过具体的代码示例,展示了不同类型的深度学习模型的实现方法和应用场景。同时,对不同模型的特点和应用场景进行了对比,并给出了模型选择和优化的建议。
5.2 展望
随着深度学习技术的不断发展,未来可能会出现更多高效、强大的深度学习模型和算法。同时,深度学习在工业应用中的范围也会不断扩大,如智能制造、智能交通、智能医疗等领域。此外,结合其他技术,如强化学习、迁移学习等,将进一步提升深度学习模型的性能和应用价值。
在实际应用中,我们可以根据具体的任务需求和数据特点,选择合适的深度学习模型,并通过优化方法不断提高模型的性能。同时,我们也需要关注深度学习技术的发展动态,及时应用新的技术和方法,以适应不断变化的应用场景。
5.3 整体流程总结
graph LR
A[确定任务与数据类型] --> B[选择合适的模型]
B --> C[数据处理与预处理]
C --> D[模型构建与训练]
D --> E[模型评估与优化]
E --> F[模型应用与部署]
通过以上流程,我们可以从任务需求出发,选择合适的模型,经过数据处理、模型训练、评估优化等步骤,最终将模型应用到实际场景中。
超级会员免费看
33

被折叠的 条评论
为什么被折叠?



