18、机器学习在工业应用及Julia深度学习实现

机器学习在工业应用及Julia深度学习实现

1. 机器学习在工业应用中的性别与年龄检测

1.1 数据处理

首先,将训练图像和测试图像转换为NumPy数组,并打印其形状:

train_images = np.asarray(train_images)
test_images = np.asarray(test_images)
print("Train images shape {}".format(train_images.shape))
print("Test images shape {}".format(test_images.shape))

1.2 方向模型构建

构建一个方向模型,使用卷积层、池化层、归一化层和全连接层:

model = Sequential()
model.add(Conv2D(input_shape=(227, 227, 3), filters=95, kernel_size=(7, 7),
                 strides=4, padding="valid", activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Conv2D(filters=256, kernel_size=(5, 5), strides=1, padding="same", activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Conv2D(filters=256, kernel_size=(3, 3), strides=1, padding="same", activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Flatten())
model.add(Dense(units=512, activation="relu"))
model.add(Dropout(rate=0.25))
model.add(Dense(units=512, activation='relu'))
model.add(Dropout(rate=0.25))
model.add(Dense(units=2, activation="softmax"))
model.summary()

1.3 模型训练

使用早停回调机制训练模型,并保存模型:

callback = tf.keras.callbacks.EarlyStopping(monitor="loss", patience=3)
model.compile(optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
history = model.fit(train_images, y_train, batch_size=32, epochs=25, validation_data=(test_images, y_test),
                    callbacks=[callback])
print("++++++++++++++++++++++++++++++++++++++++++++++")
model.save("gender_model25.h5")
test_loss, test_acc = model.evaluate(test_images, y_test, verbose=2)
print(test_acc)

1.4 年龄信息的训练与测试集划分

对年龄信息进行训练集和测试集的划分:

x = clean_data[["Log_path"]]
y = clean_data[["age"]]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
print("Train data shape {}".format(X_train.shape))
print("Test data shape {}".format(X_test.shape))
train_images = []
test_images = []
for row in X_train.iterrows():
    image = Image.open(row[1].img_path)
    image = image.resize((227, 227))
    data = np.asarray(image)
    train_images.append(data)
for row in X_test.iterrows():
    image = Image.open(row[1].img_path)
    image = image.resize((227, 227))
    data = np.asarray(image)
    test_images.append(data)
train_images = np.asarray(train_images)
test_images = np.asarray(test_images)
print("Train images shape {}".format(train_images.shape))
print("Test images shape {}".format(test_images.shape))

1.5 年龄模型构建与训练

构建年龄模型并进行训练:

model = Sequential()
model.add(Conv2D(input_shape=(227, 227, 3), filters=6, kernel_size=(7, 7),
                 strides=4, padding="valid", activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Conv2D(filters=250, kernel_size=(3, 5), strides=1, padding="same", activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Conv2D(filters=256, kernel_size=(3, 3), strides=1, padding="same", activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(LayerNormalization())
model.add(Flatten())
model.add(Dense(units=512, activation="relu"))
model.add(Dropout(rate=0.25))
model.add(Dense(units=512, activation="relu"))
model.add(Dropout(rate=0.25))
model.add(Dense(units=8, activation="softmax"))
model.summary()
callback = tf.keras.callbacks.EarlyStopping(monitor="loss", patience=3)
model.compile(optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
history = model.fit(train_images, y_train, batch_size=32, epochs=50, validation_data=(test_images, y_test),
                    callbacks=[callback])
model.save("age_model50.h5")
test_loss, test_acc = model.evaluate(test_images, y_test, verbose=2)
print(test_acc)

1.6 模型推理

加载预训练模型进行性别和年龄检测:

import keras
import json
import sys
import tensorflow as tf
from keras.layers import Input
import numpy as np
import argparse
from wide_resnet import WideResNet
from keras.utils.data_utils import get_file
import face_recognition

gender_model = tf.keras.models.load_model('weights.hdf5')
gender_model.summary()
age_map = [['0-2'], ['4-6'], ['8-13'], ['15-20'], ['25-32'], ['38-43'], ['48-63'], ['60+']]

def detect_face(self):
    cap = cv2.VideoCapture(0)
    while True:
        grb, frame = cap.read()
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        if not grb:
            break
        face_locations = face_recognition.face_locations(frame)
        print(face_locations)
        if face_locations == []:
            cv2.imshow("Gender and age", frame)
            if cv2.waitKey(1) == 27:
                break
        else:
            cv2.rectangle(frame, (face_locations[0][3], face_locations[0][0]),
                          (face_locations[0][1], face_locations[0][2]), (255, 200, 0), 2)
            img = frame[face_locations[0][0] - 25: face_locations[0][2] - 25,
                        face_locations[0][3] - 25: face_locations[0][1] + 25]
            img2 = cv2.resize(img, (64, 64))
            img2 = np.array([img2]).reshape((1, 64, 64, 3))
            results = self.model.predict(img2)
            predicted_genders = results[0]
            gen = "F" if predicted_genders[0][0] > 0.5 else "M"
            ages = np.arange(0, 101).reshape(101, 1)
            predicted_ages = results[1].dot(ages).flatten()
            pred = ""
            pred = str(int(predicted_ages[0])) + " " + str(gen)
            print(pred)
            cv2.putText(frame, pred, (face_locations[0][3], face_locations[0][0]),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, (2, 255, 255), 2)
            cv2.imshow("Gender and age", frame)
    cap.release()
    if cv2.waitKey(1) == 27:
        cv2.destroyAllWindows()

1.7 流程总结

下面是性别与年龄检测的流程图:

graph LR
    A[数据处理] --> B[方向模型构建]
    B --> C[模型训练]
    C --> D[年龄信息划分]
    D --> E[年龄模型构建与训练]
    E --> F[模型推理]

2. 使用Julia进行高级深度学习

2.1 卷积神经网络(CNN)

使用Flux库构建CNN模型:

using Flux
using Flux: @epochs, onehotbatch, onecold, throttle
using Statistics
using Base.Iterators: repeated

function build_model()
    return Chain(
        Conv((3, 3), 1 => 16, relu),
        MaxPool((2, 2)),
        Conv((3, 3), 16 => 32, relu),
        MaxPool((2, 2)),
        Conv((3, 3), 32 => 64, relu),
        MaxPool((2, 2)),
        flatten,
        Dense(64 * 4 * 4, 128, relu),
        Dense(128, 10),
        softmax
    )
end

using Flux.Data.MNIST
imgs = MNIST.images()
labels = MNIST.labels()
X = hcat(float.(reshape.(imgs, :))...) |> gpu
Y = onehotbatch(labels, 0:9) |> gpu
train_indices = 1:50000
test_indices = 50001:60000
train_data = (X[:, train_indices], Y[:, train_indices])
test_data = (X[:, test_indices], Y[:, test_indices])
model = build_model() |> gpu
loss(x, y) = Flux.crossentropy(model(x), y)
optimizer = Flux.ADAM(params(model))
epochs = 10
@epochs epochs Flux.train!(loss, train_data, optimizer, cb = throttle(() -> println("Loss: ", loss(X, Y)), 10))
accuracy(x, y) = mean(onecold(model(x)) .== onecold(y))
acc = accuracy(test_data...)
println("Test accuracy: $acc")

2.2 深度神经网络(DNN)

构建DNN模型:

using Flux
using Flux: @epochs, onecold, onehotbatch
using Statistics

function build_model()
    return Chain(
        Dense(784, 128, relu),
        Dense(128, 64, relu),
        Dense(64, 10),
        softmax
    )
end

using Flux.Data.MNIST
imgs = MNIST.images()
labels = MNIST.labels()
X = hcat(float.(reshape.(imgs, :))...)
Y = onehotbatch(labels, 0:9)
train_indices = 1:50000
test_indices = 50001:60000
train_data = (X[:, train_indices], Y[:, train_indices])
test_data = (X[:, test_indices], Y[:, test_indices])
model = build_model()
loss(x, y) = Flux.crossentropy(model(x), y)
optimizer = Flux.ADAM(params(model))
epochs = 10
@epochs epochs Flux.train!(loss, train_data, optimizer)
accuracy(x, y) = mean(onecold(model(x)) .== onecold(y))
acc = accuracy(test_data...)
println("Test accuracy: $acc")

2.3 循环神经网络(RNN)

构建RNN模型:

using Flux
using Flux: onehot, onehotbatch, crossentropy, throttle
using Statistics

function build_model(vocab_size::Int, hidden_size::Int)
    return Chain(
        LSTM(vocab_size, hidden_size),
        Dense(hidden_size, vocab_size),
        softmax
    )
end

function generate_text(corpus::String, seq_length::Int)
    data = collect(corpus)
    X = []
    Y = []
    for i in 1:length(data) - seq_length
        push!(X, data[i:i + seq_length - 1])
        push!(Y, data[i + seq_length])
    end
    return X, Y
end

corpus = "This is an example text used for training RNN model."
vocab = unique(collect(corpus))
vocab_size = length(vocab)
char_to_index = Dict(vocab[i] => i for i in 1:vocab_size)
index_to_char = Dict(i => vocab[i] for i in 1:vocab_size)
seq_length = 10
X, Y = generate_text(corpus, seq_length)
X = hcat(onehotbatch(X, vocab_size)...)
Y = onehotbatch(Y, vocab_size)
train_indices = 1:floor(Int, 0.8 * length(X))
test_indices = length(train_indices) + 1:length(X)
train_data = (X[:, train_indices], Y[:, train_indices])
test_data = (X[:, test_indices], Y[:, test_indices])
hidden_size = 128
model = build_model(vocab_size, hidden_size)
loss(x, y) = crossentropy(model(x), y)
optimizer = ADAM(params(model), 0.01)
epochs = 10
@epochs epochs Flux.train!(loss, train_data, optimizer, cb = throttle(() -> println("Loss: ", loss(X, Y)), 2))

function generate_text(model, seed::String, length::Int)
    current_char = seed[end]
    result = seed
    for i in 1:length
        input = onehot(vocab_size, char_to_index[current_char])
        output = model(input)
        idx = argmax(output)
        current_char = index_to_char[idx]
        result *= current_char
    end
    return result
end

seed = "This is"
generated_text = generate_text(model, seed, 100)
println("Generated text:")
println(generated_text)

2.4 长短期记忆网络(LSTM)

构建LSTM模型,代码与RNN类似:

# 代码与RNN部分基本相同,只需将RNN的LSTM层替换为LSTM即可

2.5 生成对抗网络(GAN)

构建GAN模型:

using Random
using Flux
using Flux: @epochs, mse, throttle
using Statistics

function build_generator(noise_size::Int, output_size::Int)
    return Chain(
        Dense(noise_size, 128, relu),
        Dense(128, output_size, σ)
    )
end

function build_discriminator(input_size::Int)
    return Chain(
        Dense(input_size, 128, relu),
        Dense(128, 1, σ)
    )
end

function generate_noise(batch_size::Int, noise_size::Int)
    return randn(batch_size, noise_size)
end

function train_gan(generator, discriminator, noise_size::Int, batch_size::Int, data_loader, epochs::Int)
    loss_fn = mse
    opt_gen = ADAM(params(generator), 0.001)
    opt_disc = ADAM(params(discriminator), 0.001)
    for epoch in 1:epochs
        for real_data_batch in data_loader
            noise = generate_noise(batch_size, noise_size)
            fake_data_batch = generator(noise)
            discriminator_loss = loss_fn(discriminator(real_data_batch), ones(batch_size)) +
                                 loss_fn(discriminator(fake_data_batch), zeros(batch_size))
            Flux.back!(discriminator_loss)
            Flux.update!(opt_disc)
            noise = generate_noise(batch_size, noise_size)
            fake_data_batch = generator(noise)
            generator_loss = loss_fn(discriminator(fake_data_batch), ones(batch_size))
            Flux.back!(generator_loss)
            Flux.update!(opt_gen)
        end
        println("Epoch $epoch completed")
    end
end

noise_size = 100
data_size = 1000
batch_size = 64
epochs = 10
fake_data = rand(data_size, noise_size)
generator = build_generator(noise_size, data_size)
discriminator = build_discriminator(data_size)
train_gan(generator, discriminator, noise_size, batch_size, fake_data, epochs)

2.6 门控循环单元(GRU)

构建GRU模型:

# 代码与RNN部分基本相同,只需将RNN的LSTM层替换为GRU即可

2.7 径向基函数网络(RBFN)

构建RBFN模型:

using LinearAlgebra

function radial_basis_function(x, c, σ)
    return exp(-norm(x - c)^2 / (2 * σ^2))
end

struct RBFN
    centers::Matrix{Float64}
    weights::Vector{Float64}
    σ::Float64
end

function RBFN(centers::Matrix{Float64}, σ::Float64)
    return RBFN(centers, zeros(size(centers, 2)), σ)
end

function train_rbfn!(rbfn::RBFN, X::Matrix{Float64}, Y::Vector{Float64})
    Φ = [radial_basis_function(X[:, i], rbfn.centers[:, j], rbfn.σ) for i in 1:size(X, 2), j in 1:size(rbfn.centers, 2)]
    rbfn.weights = Φ \ Y
end

function predict(rbfn::RBFN, x::Vector{Float64})
    Φ = [radial_basis_function(x, rbfn.centers[:, j], rbfn.σ) for j in 1:size(rbfn.centers, 2)]
    return sum(rbfn.weights .* Φ)
end

X = randn(2, 100)
Y = sin.(sum(X, dims=1))
num_centers = 10
σ = 0.1
centers = randn(2, num_centers)
rbfn = RBFN(centers, σ)
train_rbfn!(rbfn, X, Y)
x_test = [0.5, 0.5]
prediction = predict(rbfn, x_test)
println("Prediction for $x_test: $prediction")

2.8 多层感知器(MLP)

构建MLP模型:

using Flux
using Flux: onehotbatch, onecold, crossentropy, throttle
using Statistics

function build_model(input_size::Int, hidden_sizes::Vector{Int}, output_size::Int)
    layers = []
    push!(layers, Dense(input_size, hidden_sizes[1], relu))
    for i in 2:length(hidden_sizes)
        push!(layers, Dense(hidden_sizes[i - 1], hidden_sizes[i], relu))
    end
    push!(layers, Dense(hidden_sizes[end], output_size))
    return Chain(layers...)
end

using Flux.Data.MNIST
imgs = MNIST.images()
labels = MNIST.labels()
X = hcat(float.(reshape.(imgs, :))...)
Y = onehotbatch(labels, 0:9)
train_indices = 1:50000
test_indices = 50001:60000
train_data = (X[:, train_indices], Y[:, train_indices])
test_data = (X[:, test_indices], Y[:, test_indices])
input_size = size(X, 1)
hidden_sizes = [64, 32]
output_size = size(Y, 1)
model = build_model(input_size, hidden_sizes, output_size)
loss(x, y) = crossentropy(model(x), y)
optimizer = ADAM(params(model), 0.01)
epochs = 10
@epochs epochs Flux.train!(loss, train_data, optimizer, cb = throttle(() -> println("Loss: ", loss(X, Y)), 5))
accuracy(x, y) = mean(onecold(model(x)) .== onecold(y))
acc = accuracy(test_data...)
println("Test accuracy: $acc")

2.9 自组织映射(SOM)

构建SOM模型:

using Random

struct SOM
    grid::Matrix{Vector{Float64}}
    input_size::Int
    grid_size::Tuple{Int, Int}
    learning_rate::Float64
end

function initialize_som(input_size::Int, grid_size::Tuple{Int, Int})
    grid = [rand(input_size) for _ in 1:grid_size[1] * grid_size[2]]
    return SOM(grid, input_size, grid_size, 0.1)
end

function find_bmu(som::SOM, input::Vector{Float64})
    bmu_index = argmin([norm(input - som.grid[i]) for i in 1:length(som.grid)])
    return bmu_index, som.grid[bmu_index]
end

function update_som!(som::SOM, input::Vector{Float64}, bmu_index::Int, iteration::Int, max_iterations::Int)
    radius = max(som.grid_size...) * exp(-iteration / max_iterations)
    for i in 1:length(som.grid)
        distance = abs(i - bmu_index)
        if distance <= radius
            influence = exp(-(distance^2) / (2 * radius^2))
            som.grid[i] += som.learning_rate * influence * (input - som.grid[i])
        end
    end
end

function train_som!(som::SOM, inputs::Matrix{Float64}, max_iterations::Int)
    for iteration in 1:max_iterations
        for input in eachcol(inputs)
            bmu_index, bmu = find_bmu(som, input)
            update_som!(som, input, bmu_index, iteration, max_iterations)
        end
    end
end

2.10 流程总结

下面是Julia深度学习模型构建与训练的流程图:

graph LR
    A[数据加载与预处理] --> B[模型构建]
    B --> C[损失函数与优化器定义]
    C --> D[模型训练]
    D --> E[模型测试]

综上所述,本文介绍了机器学习在工业应用中的性别与年龄检测,以及使用Julia进行多种深度学习模型的构建与训练。通过这些示例代码,我们可以看到不同类型的深度学习模型在不同任务中的应用。

3. 不同模型的特点与应用场景对比

3.1 模型特点对比

模型类型 特点
卷积神经网络(CNN) 适合处理具有网格结构的数据,如图像。通过卷积层自动提取特征,减少参数数量,具有平移不变性。
深度神经网络(DNN) 由多个全连接层组成,结构简单,可用于处理各种类型的数据,但参数数量较多,容易过拟合。
循环神经网络(RNN) 能够处理序列数据,通过隐藏状态传递信息,但存在梯度消失或梯度爆炸问题。
长短期记忆网络(LSTM) 是RNN的改进,通过门控机制解决了梯度消失问题,更适合处理长序列数据。
生成对抗网络(GAN) 由生成器和判别器组成,用于生成新的数据,如图像、文本等。
门控循环单元(GRU) 也是RNN的改进,结构比LSTM简单,训练速度更快。
径向基函数网络(RBFN) 以径向基函数为激活函数,具有局部逼近能力,可用于函数逼近和分类问题。
多层感知器(MLP) 是最基本的神经网络,由输入层、隐藏层和输出层组成,可用于各种分类和回归问题。
自组织映射(SOM) 用于无监督学习,将高维数据映射到低维网格上,保留数据的拓扑结构。

3.2 应用场景对比

模型类型 应用场景
卷积神经网络(CNN) 图像分类、目标检测、语义分割等。
深度神经网络(DNN) 语音识别、自然语言处理中的文本分类、回归分析等。
循环神经网络(RNN) 语言模型、机器翻译、时间序列预测等。
长短期记忆网络(LSTM) 股票价格预测、情感分析、语音识别等。
生成对抗网络(GAN) 图像生成、数据增强、风格迁移等。
门控循环单元(GRU) 与LSTM类似,但在一些对训练速度要求较高的场景中更有优势。
径向基函数网络(RBFN) 函数逼近、模式识别、故障诊断等。
多层感知器(MLP) 手写数字识别、信用风险评估、医疗诊断等。
自组织映射(SOM) 数据可视化、聚类分析、异常检测等。

4. 模型选择与优化建议

4.1 模型选择

在选择合适的深度学习模型时,需要考虑以下因素:
1. 数据类型 :如果是图像数据,CNN是较好的选择;如果是序列数据,RNN、LSTM或GRU更合适;如果是无监督学习任务,SOM可能是一个不错的选择。
2. 任务类型 :分类任务可以选择CNN、DNN、MLP等;回归任务可以选择DNN、RBFN等;生成任务可以选择GAN。
3. 数据规模 :数据规模较小时,简单的模型如MLP可能更合适;数据规模较大时,可以选择复杂的模型如CNN、LSTM。
4. 计算资源 :一些复杂的模型(如GAN)需要大量的计算资源和时间进行训练,如果计算资源有限,可以选择相对简单的模型。

4.2 模型优化

以下是一些常见的模型优化方法:
1. 数据增强 :对于图像数据,可以进行旋转、翻转、缩放等操作;对于文本数据,可以进行同义词替换、插入、删除等操作,以增加数据的多样性。
2. 正则化 :如L1和L2正则化、Dropout等,可防止模型过拟合。
3. 调整超参数 :如学习率、批量大小、训练轮数等,通过网格搜索、随机搜索等方法找到最优的超参数组合。
4. 模型融合 :将多个不同的模型进行融合,如投票法、平均法等,以提高模型的性能。

5. 总结与展望

5.1 总结

本文详细介绍了机器学习在工业应用中的性别与年龄检测,以及使用Julia进行多种深度学习模型的构建与训练。通过具体的代码示例,展示了不同类型的深度学习模型的实现方法和应用场景。同时,对不同模型的特点和应用场景进行了对比,并给出了模型选择和优化的建议。

5.2 展望

随着深度学习技术的不断发展,未来可能会出现更多高效、强大的深度学习模型和算法。同时,深度学习在工业应用中的范围也会不断扩大,如智能制造、智能交通、智能医疗等领域。此外,结合其他技术,如强化学习、迁移学习等,将进一步提升深度学习模型的性能和应用价值。

在实际应用中,我们可以根据具体的任务需求和数据特点,选择合适的深度学习模型,并通过优化方法不断提高模型的性能。同时,我们也需要关注深度学习技术的发展动态,及时应用新的技术和方法,以适应不断变化的应用场景。

5.3 整体流程总结

graph LR
    A[确定任务与数据类型] --> B[选择合适的模型]
    B --> C[数据处理与预处理]
    C --> D[模型构建与训练]
    D --> E[模型评估与优化]
    E --> F[模型应用与部署]

通过以上流程,我们可以从任务需求出发,选择合适的模型,经过数据处理、模型训练、评估优化等步骤,最终将模型应用到实际场景中。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值