OpenCV中遍历图像

  • iterator
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
{
    // accept only char type matrices
    CV_Assert(I.depth() == CV_8U);

    const int channels = I.channels();
    switch(channels)
    {
    case 1:
        {
            MatIterator_<uchar> it, end;
            for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
                *it = table[*it];
            break;
        }
    case 3:
        {
            MatIterator_<Vec3b> it, end;
            for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)
            {
                (*it)[0] = table[(*it)[0]];
                (*it)[1] = table[(*it)[1]];
                (*it)[2] = table[(*it)[2]];
            }
        }
    }

    return I;
}

LUT

Mat lookUpTable(1, 256, CV_8U);
    uchar* p = lookUpTable.data;
    for( int i = 0; i < 256; ++i)
        p[i] = table[i];

  LUT(I, lookUpTable, J);

完整程序

/*
 * main.cpp
 *
 *  Created on: Mar 5, 2017
 *      Author: may
 */
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include "opencv2/imgcodecs.hpp"
#include <opencv2/highgui.hpp>
#include <iostream>
#include <sstream>

using namespace std;
using namespace cv;

static void help()
{
    cout
        << "\n--------------------------------------------------------------------------" << endl
        << "This program shows how to scan image objects in OpenCV (cv::Mat). As use case"
        << " we take an input image and divide the native color palette (255) with the "  << endl
        << "input. Shows C operator[] method, iterators and at function for on-the-fly item address calculation."<< endl
        << "Usage:"                                                                       << endl
        << "./how_to_scan_images <imageNameToUse> <divideWith> [G]"                       << endl
        << "if you add a G parameter the image is processed in gray scale"                << endl
        << "--------------------------------------------------------------------------"   << endl
        << endl;
}


Mat& ScanImageAndReduceIterator(Mat& I, const uchar* table);

int main()
{
    help();


    Mat I, J;
    I = imread("image.jpg");

    if (I.empty())
    {
        cout << "The image could not be loaded." << endl;
        return -1;
    }

    //! [dividewith]
    int divideWith = 7; // convert our input string to number - C++ style


    uchar table[256];
    for (int i = 0; i < 256; ++i)
       table[i] = (uchar)(divideWith * (i/divideWith));
    //! [dividewith]

    const int times = 100;
    double t;

    t = (double)getTickCount();


    for (int i = 0; i < times; ++i)
    {
        cv::Mat clone_i = I.clone();
        J = ScanImageAndReduceIterator(clone_i, table);
    }

    t = 1000*((double)getTickCount() - t)/getTickFrequency();
    t /= times;

    cout << "Time of reducing with the iterator (averaged for "
        << times << " runs): " << t << " milliseconds."<< endl;



    //! [table-init]
    Mat lookUpTable(1, 256, CV_8U);
    uchar* p = lookUpTable.ptr();
    for( int i = 0; i < 256; ++i)
        p[i] = table[i];
    //! [table-init]

    t = (double)getTickCount();

    for (int i = 0; i < times; ++i)
        //! [table-use]
        LUT(I, lookUpTable, J);
        //! [table-use]

    t = 1000*((double)getTickCount() - t)/getTickFrequency();
    t /= times;

    cout << "Time of reducing with the LUT function (averaged for "
        << times << " runs): " << t << " milliseconds."<< endl;
    return 0;
}



//! [scan-iterator]
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
{
    // accept only char type matrices
    CV_Assert(I.depth() == CV_8U);

    const int channels = I.channels();
    switch(channels)
    {
    case 1:
        {
            MatIterator_<uchar> it, end;
            for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
                *it = table[*it];
            break;
        }
    case 3:
        {
            MatIterator_<Vec3b> it, end;
            for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)
            {
                (*it)[0] = table[(*it)[0]];
                (*it)[1] = table[(*it)[1]];
                (*it)[2] = table[(*it)[2]];
            }
        }
    }

    return I;
}
//! [scan-iterator]

实验结果
这里写图片描述

最快的方法是LUT,因为利用了多线程。平时推荐Iterator方法,比较安全。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值