Ray AI 库入门与大语言模型训练部署实践
1. 模型调优与检查点获取
在使用 Ray AI 库时,我们可以通过以下代码进行模型调优并获取检查点:
trainer = XGBoostTrainer(
label_column="target",
params={},
datasets={"train": get_dataset()},
)
param_space = {
"scaling_config": ScalingConfig(
num_workers=tune.grid_search([2, 4]),
resources_per_worker={
"CPU": tune.grid_search([1, 2]),
},
),
"params": {
"objective": "binary:logistic",
"tree_method": "approx",
"eval_metric": ["logloss", "error"],
"eta": tune.loguniform(1e-4, 1e-1),
"subsample": tune.uniform(0.5, 1.0),
"max_depth": tune.randint(1, 9),
},
}
tuner = Tuner(trainable=trainer, param_space=param_space,
run
超级会员免费看
订阅专栏 解锁全文
3389

被折叠的 条评论
为什么被折叠?



