大家都知道,对于回归任务,GBDT的loss=(y-pred)^2,因此残差residual=2*(y-pred)很容易理解。
那么,GBDT做分类任务时,残差是怎样的呢???
Gradient Boosting attempts to solve this minimization problem numerically via steepest descent,
The steepest descent direction is the negative gradient of the loss function evaluated at the current model
,
which can be calculated for any differentiable loss function。
The algorithms for regression and classification only differ in the concrete loss function used.
下面以分类的deviance为例:http://scikit-learn.org/stable/modules/ensemble.html#loss-functions
Classification
- Binomial deviance (
'deviance'): The negative binomial log-likelihood loss function for binary classification (provides probability estimates). - The initial model is given by the log odds-ratio.
0)
GBDT分类任务中的残差计算原理

GBDT在分类任务中的残差计算基于负梯度方向,对于二元分类,使用二项式偏差损失函数,残差为y与经过logistic函数得到的概率预测值pred之间的差值。在多类别分类中,通过转换为多个二元分类问题来计算。分类器内部实际上使用的是回归树。
最低0.47元/天 解锁文章
7499





