scikit-learn:4.4. Unsupervised dimensionality reduction(降维)

本文探讨了在高维数据预处理阶段,如何使用PCA、随机投影和特征集聚等方法进行维度减少,以简化数据结构并提高后续模型训练效率。重点介绍了PCA原理及其在人脸识别领域的应用实例,随机投影在数据嵌入中的作用,以及特征集聚如何通过层次聚类合并相似特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:http://scikit-learn.org/stable/modules/unsupervised_reduction.html


对于高维features,常常需要在supervised之前unsupervised dimensionality reduction。



下面三节的翻译会在之后附上。

4.4.1. PCA: principal component analysis

decomposition.PCA looks for a combination of features that capture well the variance of the original features. See Decomposing signals in components (matrix factorization problems). 翻译文章参考:http://blog.youkuaiyun.com/mmc2015/article/details/46867597

4.4.2. Random projections

The module: random_projection provides several toolsfor data reduction by random projections. See the relevant section of the documentation: Random Projection. 翻译文章参考:http://blog.youkuaiyun.com/mmc2015/article/details/47067003

4.4.3. Feature agglomeration(特征集聚)

cluster.FeatureAgglomeration applies Hierarchical clustering to group together features that behave similarly.

Feature scaling

Note that if features have very different scaling or statistical properties, cluster.FeatureAgglomeration may not be able to capture the links between related features. Using a preprocessing.StandardScaler can be useful in these settings.



Pipelining:The unsupervised data reduction and the supervised estimator can be chained in one step. See Pipeline: chaining estimators.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值