Codeforces 672D Robin Hood【思维+二分】这题思路有点劲啊

本文介绍了一种模拟Robin Hood财富再分配的算法挑战。通过分析不同人的初始财富值,在特定天数内,最富有的人为最贫穷的人提供资金,直至Robin Hood退休。文章详细解析了解决方案,并给出AC代码实现。

D. Robin Hood
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

We all know the impressive story of Robin Hood. Robin Hood uses his archery skills and his wits to steal the money from rich, and return it to the poor.

There are n citizens in Kekoland, each person has ci coins. Each day, Robin Hood will take exactly 1 coin from the richest person in the city and he will give it to the poorest person (poorest person right after taking richest's 1 coin). In case the choice is not unique, he will select one among them at random. Sadly, Robin Hood is old and want to retire in k days. He decided to spend these last days with helping poor people.

After taking his money are taken by Robin Hood richest person may become poorest person as well, and it might even happen that Robin Hood will give his money back. For example if all people have same number of coins, then next day they will have same number of coins too.

Your task is to find the difference between richest and poorest persons wealth after k days. Note that the choosing at random among richest and poorest doesn't affect the answer.

Input

The first line of the input contains two integers n and k (1 ≤ n ≤ 500 000, 0 ≤ k ≤ 109) — the number of citizens in Kekoland and the number of days left till Robin Hood's retirement.

The second line contains n integers, the i-th of them is ci (1 ≤ ci ≤ 109) — initial wealth of the i-th person.

Output

Print a single line containing the difference between richest and poorest peoples wealth.

Examples
Input
4 1
1 1 4 2
Output
2
Input
3 1
2 2 2
Output
0
Note

Lets look at how wealth changes through day in the first sample.

  1. [1, 1, 4, 2]
  2. [2, 1, 3, 2] or [1, 2, 3, 2]

So the answer is 3 - 1 = 2

In second sample wealth will remain the same for each person.


题目大意:

给你N个人的财富值,每天最有钱的人会给最没钱的人一块钱,问K天之后,最穷的人和最富有的人之间差多少钱。


思路:


1、virtual contest过程中一直在二分差值,然后发现最小值和最大值的问题不是很好处理,一直在想一个科学的连续二分的方式去枚举出最小值和最大值。以一种二分套二分的方式去解,以失败告终。


2、正解是这样的:
①因为时间越长(天数经过的越多),最大值就会越小,同理,最小值就会越大(所以这就是智障的去二分差值的理由?尼玛本质是最大值最小值的变化好嘛,为毛要想到差值上去.......)那么我们二分一个最小值,接下来二分一个最大值。

②判定二分的过程很简单,对于枚举最小值的时候,如果需要的最少天数小于等于k,那么就加大最小值,否则减小最小值即可。那么二分枚举最大值的时候同理即可。

③问题的坑点在于维护上下界。对于总值:sum,如果sum%n==0,那么最小值的上界就是sum/n,最大值的下界也是sum/n.当sum%n!=0的时候,最小值的上界还是sum/n,但是最大值的下界应该是sum/n+1.这里被坑了......................


3、过程维护最终解,细心一些没有别的了。


Ac代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll __int64
ll a[500500];
ll n,m;
int Slove(ll mid)
{
    ll sum=0;
    for(int i=1;i<=n;i++)
    {
        if(a[i]<mid)sum+=mid-a[i];
    }
    if(sum<=m)return 1;
    else return 0;
}
int Slove2(ll mid)
{
    ll sum=0;
    for(int i=n;i>=1;i--)
    {
        if(a[i]>mid)sum+=abs(mid-a[i]);
    }
    if(sum<=m)return 1;
    else return 0;
}
int main()
{
    while(~scanf("%I64d%I64d",&n,&m))
    {
        ll sum=0;
        ll up,down;
        for(int i=1;i<=n;i++)
        {
            scanf("%I64d",&a[i]);
            sum+=a[i];
        }
        if(sum%n==0)up=down=sum/n;
        else up=sum/n,down=up+1;
        sort(a+1,a+1+n);
        ll l=0;
        ll r=up;
        ll minn=-1;
        while(r-l>=0)
        {
            ll mid=(l+r)/2;
            if(Slove(mid)==1)
            {
                minn=mid;
                l=mid+1;
            }
            else r=mid-1;
        }
        l=down;
        r=1000000000;
        ll maxn=-1;
        while(r-l>=0)
        {
            ll mid=(l+r)/2;
            if(Slove2(mid)==1)
            {
                maxn=mid;
                r=mid-1;
            }
            else l=mid+1;
        }
        printf("%I64d\n",maxn-minn);
    }
}





### Codeforces 思维题解思路和技巧 #### 预处理的重要性 对于许多竞赛编程问而言,预处理能够显著提高效率并简化后续操作。通过提前计算某些固定的数据结构或模式匹配表,可以在实际求解过程中节省大量时间。例如,在字符串处理类目中预先构建哈希表来加速查找过程[^1]。 #### 算法优化策略 针对特定类型的输入数据设计高效的解决方案至关重要。当面对大规模测试案例时,简单的暴力破解往往无法满足时限要求;此时则需考虑更高级别的算法改进措施,比如动态规划、贪心算法或是图论中的最短路径算法等。此外,合理利用空间换取时间也是一种常见的优化手段[^2]。 #### STL库的应用价值 C++标准模板库提供了丰富的容器类型(vector, deque)、关联式容器(set,map)以及各种迭代器支持,极大地便利了程序开发工作。熟练掌握这些工具不仅有助于快速实现功能模块,还能有效减少代码量从而降低出错几率。特别是在涉及频繁插入删除场景下,优先选用双向队列deque而非单向链表list可获得更好的性能表现。 ```cpp #include <iostream> #include <deque> using namespace std; int main(){ deque<int> dq; // 向两端添加元素 dq.push_back(5); dq.push_front(3); cout << "Front element is: " << dq.front() << endl; cout << "Back element is : " << dq.back() << endl; return 0; } ``` #### 实际应用实例分析 以一道具体目为例:给定一系列查询指令,分别表示往左端/右端插入数值或者是询问某个指定位置到边界之间的最小距离。此目的关键在于如何高效地追踪最新状态而无需重复更新整个数组。采用双指针技术配合静态分配的一维数组即可轻松解决上述需求,同时保证O(n)级别的总运行成本[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值