Codeforces 389C Fox and Box Accumulation【贪心】

本文介绍了一种关于盒子堆叠的算法问题,旨在通过合理的排序和遍历策略找到最小数量的盒子堆叠方案。问题中考虑了不同强度的盒子如何进行有效堆叠,并提供了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Fox and Box Accumulation
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Fox Ciel has n boxes in her room. They have the same size and weight, but they might have different strength. The i-th box can hold at most xi boxes on its top (we'll call xi the strength of the box).

Since all the boxes have the same size, Ciel cannot put more than one box directly on the top of some box. For example, imagine Ciel has three boxes: the first has strength 2, the second has strength 1 and the third has strength 1. She cannot put the second and the third box simultaneously directly on the top of the first one. But she can put the second box directly on the top of the first one, and then the third box directly on the top of the second one. We will call such a construction of boxes a pile.

Fox Ciel wants to construct piles from all the boxes. Each pile will contain some boxes from top to bottom, and there cannot be more than xi boxes on the top of i-th box. What is the minimal number of piles she needs to construct?

Input

The first line contains an integer n (1 ≤ n ≤ 100). The next line contains n integers x1, x2, ..., xn (0 ≤ xi ≤ 100).

Output

Output a single integer — the minimal possible number of piles.

Examples
Input
3
0 0 10
Output
2
Input
5
0 1 2 3 4
Output
1
Input
4
0 0 0 0
Output
4
Input
9
0 1 0 2 0 1 1 2 10
Output
3
Note

In example 1, one optimal way is to build 2 piles: the first pile contains boxes 1 and 3 (from top to bottom), the second pile contains only box 2.

In example 2, we can build only 1 pile that contains boxes 1, 2, 3, 4, 5 (from top to bottom).


题目大意:

一共已知有N个盒子,每个盒子都有对应能够承受的压力值,假设一个盒子的压力值为4,那么其可以承担上边的盒子数就是4个,问最多需要摞几摞、


思路:


1、我们首先可以明确一点,让承受压力值低的放在上边,那么我们将盒子按照承受压力值从小到大排序。


2、然后我们用vis【i】表示第i个盒子是否已经用过了,那么我们从第一个盒子开始摞,向后扫压力值大于1的第一个盒子,然后再向后扫,找压力值大于2的第一个盒子..................依次类推,将已经用过的盒子对应vis【i】=1.标记用过了。

那么起点数,就是最少的摞数。


Ac代码:


#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int vis[150];
int a[150];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
        int output=0;
        sort(a,a+n);
        memset(vis,0,sizeof(vis));
        for(int i=0;i<n;i++)
        {
            if(vis[i]==1)continue;
            vis[i]=1;
            output++;
            int cnt=1;
            for(int j=i+1;j<n;j++)
            {
                if(vis[j]==1)continue;
                if(a[j]>=cnt)
                {
                    vis[j]=1;
                    cnt++;
                }
            }
        }
        printf("%d\n",output);
    }
}








### 解题思路 #### 问题描述 Codeforces 1678C - Tokitsukaze and Strange Inequality 是一道关于排列组合与前缀和的应用问题。给定一个长度为 \( n \) 的排列数组 \( p \),需要统计满足条件 \( a < b < c < d \) 并且 \( p_a < p_c \) 同时 \( p_b > p_d \) 的四元组数量。 --- #### 核心思想 由于数据规模较小 (\( n \leq 5000 \)),可以直接通过枚举的方式解决问题。为了降低时间复杂度,引入 **前缀和** 技术来加速计算过程[^3]。 具体来说: - 枚举变量 \( a \) 和 \( c \),固定它们之后,目标是快速找到符合条件的 \( b \) 和 \( d \)。 - 使用预处理好的前缀和数组 `num` 来高效查询某个范围内满足特定关系的数量。 - 定义辅助数组 `sum` 表示对于固定的区间范围内的某些约束条件下的累积计数结果。 --- #### 实现细节 ##### 步骤一:构建前缀和数组 `num` 定义二维数组 `num[i][j]`,其中 `num[i][j]` 表示在序列的前 \( i \) 项中,有多少个元素大于 \( j \)。 该数组可以通过如下方式初始化: ```python n = len(p) max_val = max(p) # 初始化 num 数组 num = [[0] * (max_val + 2) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(max_val + 1, -1, -1): # 反向遍历以保持正确性 if p[i - 1] > j: num[i][j] = num[i - 1][j] + 1 else: num[i][j] = num[i - 1][j] ``` 上述代码的时间复杂度为 \( O(n \cdot m) \),其中 \( m \) 是数组中的最大值。 --- ##### 步骤二:定义并填充辅助数组 `sum` 定义另一个二维数组 `sum[i][j]`,它表示当 \( a=i \), \( c=j \) 时,在区间 \([a+1, c-1]\) 中满足 \( p[b] > p[d] \) 的总贡献次数。 利用动态规划的思想逐步更新此数组: ```python sum_ = [[0] * (n + 1) for _ in range(n + 1)] bucket = [0] * (max_val + 1) for l in range(n - 1, 0, -1): bucket[p[l]] += 1 for r in range(l + 2, n + 1): sum_[l][r] = sum_[l][r - 1] + (num[r - 1][p[r - 1]] - num[l][p[r - 1]]) ``` 这里的关键在于如何有效累加当前区间的合法贡献,并借助之前已经计算的结果减少重复运算。 --- ##### 步骤三:枚举所有可能的 \( a \) 和 \( c \) 最后一步是对所有的 \( a \) 和 \( c \) 进行双重循环,并将对应位置上的 `sum[a][c]` 加入最终答案中: ```python result = 0 for a in range(1, n - 2): for c in range(a + 2, n): result += sum_[a][c] print(result) ``` 整个算法的核心部分即完成以上三个阶段的操作即可实现高效的解决方案。 --- ### 总结 本题主要考察的是对多重嵌套结构的有效简化以及合理运用前缀和技巧的能力。通过巧妙设计的数据结构能够显著提升程序运行效率至可接受水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值